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(cf. table)

L = (T/T x) (p/p ) x (7.3 A).

This empirical formula is just of the form pro-
posed by Rudnick and Fraser. ' However, although
our measurements yield the same form, the nu-
merical factor is different.

That the superfluid fraction drops relatively
precipitously to zero at film thicknesses some-
what larger than I- is apparent from Fig. 3. Let
us denote by L +~ the liquid film thickness at
which deviations from straight-line behavior oc-
cur. Then 4 represents the transition region of
film thickness over which the experimental data
clearly deviates from the straight-line, thick-
film Ginzburg-Pitaevskii theoretical result. We
find empirically (cf. table) that this transition
thickness 4 is quite well represented by the for-
mula

6 =I.p/p, . (3)

As may be evident from Figs. 2 and 3, the point
at which the superfluid begins to appear cannot
be ascertained with the same precision as can I-
and ~. We denote by I-, the thickness of the liq-
uid part of the film at which the superfluid just
begins to appear. The last column of the table
exhibits our estimates of this "onset" thickness,
I-, , in standard layers of helium.
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Relativistic Particle Motion in Nonuniform Electromagnetic Waves
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It is shown that a. charged particle moving in. a strong nonuniform electromagnetic wave
suffers a net acceleration in the direction of the negative intensity gradient of the wave.
Electrons will be expelled perpendicularly from narrow laser beams and various instabil-
ities can result.

Particles moving in electromagnetic wave
fields strong enough to drive them relativistic
have been extensively investigated in recent
years, with regard to both cosmic-ray produc-
tion in pulsars' and laser-particle interaction.
Linearly polarized plane waves can lead to par-

ticle acceleration in the forward direction while
particles in a circularly polarized wave are
thought to produce dc magnetic fields. ' Plasma
effects' including instabilities' have also been
studied in some cases. Some problems in which
the nonuniformity of the wave plays a role have
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(2)

Consider first in the lowest order the motion
of the particle in a uniform plane wave. Adopting
the Coulomb gauge we have A„= (aAi, 0, 0), a
=const; Ai(x II

—ct) =Ai(q). Equation (2) reads
now in component form

Ug ——aAi =O, (3a)

recently been investigated by Kaw and Kulsrud'
and Vittitoe and Wright. '

Here R generRl treatIQent 1s pI'esented of parti-
cles moving in weakly nonuniform waves where
the wa.ve intensity varies slowly on the space and
time scale of the particle oscillation period. It
has long been known that nonrelativistic particles
suffer a net acceleration in such a wave in the di-
rection of the negative intensity gradient. ' This
behavior is characterized by a "ponderomotive
force" and leads to mode coupling and instabili-
ties in plasmas. ' While the lowest-order parti-
cle motion in the nonrelativistic case is that of
a harmonic oscillator, the relativistic case is
more involved; but it will be shown that field
nonuniformities lead to a generalized ponderomo-
tive acceleration tending to expel particles from
regions of strong field intensity.

The equation of motion of an electron in an
electromagnetic field may be written as

dU„e BA„BA, dx„
di sl Bxp Bxp dT

where U& is the four-velocity and A„ the four-
vector potential. This equation may be cast in
the more convenient for m

The two dominant terms are the first and the
last ones, giving bB -aA iA/L. , where A. is the
wavelength Rnd L, the scale length of variation of
the slowly varying a and b.

Equation (2) yields now

()a
Ug ——aA~ = ——Aj Uj

RZ m Bxi (6)

U ti- cy ——b8

8= ——A~ ~ U~ +——a, (7)

where terms on the right-hand sides represent
small perturbations due to field nonuniformities
and some longitudinal b8 terms have been ne-
glected. ' These two equations plus the exact
equation cy = (c + UII + Ui ) (arising from U„U„
= const) are the complete set of equations to be
solved.

Substituting now the lowest-order solution for
Ui from the integral Eq. (3a) to the right-hand
side of Eqs. (6) and (7) and integrating over a,

period of particle oscillation yields

e — e' Ba
U~ ——aA~ = —

2 A~ dT
Bx~ (8)

1 g
A(UII —cy) =—,Ai'dv +——a', (9)2m' ' ex„c et

where L represents the change of a quantity over
an oscillation period. This period can be charac-
terized by the time it takes for the particle to
complete an oscillation between equal values of
Ai. The integral in Eqs. (8) and (9) is easily
evaluated:

fW, 'd& = fa, '(dq/d7) "dq=(~/Jf)(A;), (lo)
d e BA—Utt= ——a ~ U~,

dT fez Bx i[

d e 8A~
a ~ Q

dT mc

and from Eqs. (3b) and (3c)

(d/d~)(UII cy) =o.

(3c)

(4)

where dq/d7 = UII cy = EC is constant to lowest
order from Eq. (4), and Qi') is half of the am-
plitude squared for linear polarization and the
amplitude squared for circular polarization.

Consider first R light pulse broad in the direc-
tion perpendicular to its propagation such that
sa'/sxi= 0. Since for such a. long pulse

ea Bb aB
j + ~ + + ~

Bxg Bx g 8$
(5)

One may integrate Eqs. (3a) and (4) to obtain con-
stants of motion.

Now we let A&=(aA|, bB(q), 0), where a and b

vary slowly on scale lengths much larger than
the particle and wave oscillation periods. From
v A=O,

all perturbation quantities vanish. As the pulse
moves through an originally stationary particle,
after the pulse passed the particle is left station-
ary (AAi =0, bUi =0, AUII =0).

In the following we will focus our attention to
time independent fields, sa/st =0. Since A(cy)
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=(ey) '(U gU„+ p[[gZT[[), one may combine Eqs.
(8), (9), and (10) to find the change of particle
energy during an oscillation period:

2

A term linear in A~ arising from the zero-order
constant of motion in U~ AU~ which averages to
zero over an oscillation period has been dropped
from Eq. (11).

For K= const (Ba/sx[, =0) one may integrate Eq.
(11) over an oscillation period to find (Ay) =0,
where the angular brackets signify the average
of a quantity over an oscillation period. The in-
tegration of Eq. (t) shows that K=K, +O(A. Ba'/
ex[[); hence corrections in Eq. (11) due to the
variation of R' give higher-order terms. Thus
one finds in general the interesting result that
the average particle energy is an adiabatic in-
variant.

Introduce now the (proper) time of an oscilla-
tion, aT = f(dq/dT) 'dq=zK ', and use Eqs. (8)
and (9) to calculate the particle acceleration over
the slow time scale:

Q U, /~~) = —(e'/2m') Q, ') (12)
Bxg

(au [[/a~) = —(e'/2m') Q, ') sa'/ax [[,

dU, /d T = —(e'/2m') V(a'A, '), (14)

where U„ is the drift velocity of the particle,
whose acceleration is due to the intensity gradi-
ent of the wave. " Hence a particle oscillating in
a strong wave field suffers an acceleration to-
ward the weaker-field region and is ultimately
ejected from the beam. In the process the oscil-
latory particle energy turns into directed energy,
keeping y constant on the average. Qne may mul-
tiply Eq. (14) by U, to find

U„'+ (e'/m') (a'A, ') = const, (15)

which expresses again the constancy of the sum
of oscillatory and drift energies. Equation (15)
may be regarded as an energy equation with y
= (e'/m')(a'A ~') playing the role of a potential.
A particle when injected from outside the beam
will be reflected as from a potential barrier.

Finally, we wish to point out some consequenc-
es of this acceleration. Particles in a laser beam
will be accelerated and ejected sideways. The
presence of a plasma will modify our equations

(e.g. , the phase velocity of waves is no longer c),
but the basic effect of ponderomotive acceleration
is still there. The ejection of particles leads now

to a change of dielectric function along the beam
path and results in self-focusing and filamenta-
tion as in the nonrelativistic case.

For a circularly polarized wave the lowest-
order particle motion is gyration with A~- U~
= const, with the electric force providing the cen-
tripetal acceleration and v&&B =0. In the pres-
ence of Ba/sx the guiding center will be acceler-
ated toward the weaker field, as can be seen
from Eq. (6) with the right-ha. nd side providing
a constant acceleration. The physical reason for
this acceleration is easily seen; the electric
force acting on the particle is stronger along
part of its orbit where the intensity is larger
than on the weaker field side, providing a net ac-
celerating force. The presence of a background
plasma is known to lead to an axial dc magnetic
field. This may be easily incorporated in the cal-
culation, and one finds that the outward pondero-
motive force leads to an azimuthal drift in a cy-
lindrical beam. A perturbation of such an equi-
librium can lead to flute-type instabilities. De-
tails of this problem will be published elsewhere.
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Additional perturbation terms are suppressed by
ordering factors A, /&, where &; refers to the particle
excursion lengths per wave cycle. In the Lorentz
frame for which the longitudinal and transverse parti-
cle velocity vanish simultaneously, &&-—-~p and &~ ——&JL(~,

where p = (e/mc)AA.
~A comparable result has been obtained by T. W. B.

Kibble [Phys. Rev. 150, 1060 (1966)J. His analysis
treats the average motion of a charged particle in an
electromagnetic field in a weak-field limit [(e/m)A& is
an expansion parameter]. The present perturbation
scheme treats arbitrarily strong electromagnetic fields;
our perturbation parameters are the quantities A;/L,
as described above.
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We report the first observations of the small temperature oscillations which accompany
the neaxly isothermal oscillations in the levels of two reservoirs of He II which are con-
nected only by the mobile superfluid film. We show that our experimental results are in.

accord. with a nearly isothermal approximation to the general theory first elucidated by
Robinson for capillary flow. The amplitude of the temperature oscillations is in agree-
ment with expectations based on the measured thermal conductance and time constant for
our apparatus.

Consider two reservoirs each partially filled
with He II. I et the reservoirs be coupled only by
means of the mobile superfluid film. As is well
known, any chemical potential difference between
the fluid surfaces in the reservoirs will tend to
be reduced by mass transport through the super-
fluid film. As explained by Robinson' in his
treatment of He II flow in narrow channels, the
kinetic energy of the moving superfluid may re-
sult in an oscillation in the level difference be-
tween the two baths. In particular, Robinson
showed that the two cases of weak and strong
thermal contact between the reservoirs resulted
in oscillatory solutions to the equations of mo-
tion. He called these two cases adiabatic and iso-
thermal. Atkins' was the first to observe the iso-
thermal oscillations in a film-flow experiment
and the adiabatic oscillations were first seen in
bulk flow through superleaks by Manchester and
Brown. ' More recently, Hammel, Keller, and
Sherman, ' Hoffer et al, ' and Hallock and Flint'
have studied various aspects of the "isothermal"
film oscillations. Here we wish to report the
first observation of the small-amplitude tempera-
ture oscillations which accompany the level oscil-
lations described by the nearly isothermal limit
of the theory due to Robinson. '

The apparatus, Fig. j., consists of two cylindri-
cal reserviors each of which makes up the annu-
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FIG. 1. Apparatus used for the measurements. The

gap between the inner and outer conductors is 100 JLIm.

A Mylar gasket (not shown) insulates the grounded up-

per arm from the capacitors. Superfluid integrity is
accomplished through the use of indium seals.

lar region of a coaxial capacitor. The reservoirs
are sealed except for a superfluid film path. A

capillary (not shown) which has a cross sectional
area which is 6% of the area of the annular re-
gion enters from the bottom and is used to fill
the assembly to about the midpoint of the annular
region. A superfluid valve' is used to seal the
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