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The folded-diagram procedure of Brandow, suitable for many-body perturbation-theory
calculations when unperturbed functions are degenerate, is applied to the four lowest ex-
cited ~ states of H& at & = 1.4 bohr. Calculating energies Up to third order (inclusive)
and estimating higher-order corrections, an agreement of 1 kcal/mole is obtained with
the accurate results of Kolos and Wolniewicz.

The many-body perturbation theory (MBPT)
of Brueekner' and Goldstone' was first applied
to atomic systems by Kelly. ' The method has
proved very useful, and numerous calculations
of correlation energies and other atomic proper-
ties have been carried out by Kelly' and others. '
A more recent development is the application to
molecular systems. The expansion of the per-
turbation series by the linked Goldstone diagrams
is applicable only if the unperturbed function can
be represented by a single Slater determinant.
This is the case for the ground state of many
atoms and most molecules, as well as for some
excited states, such as the Ne 1s- and 2s-hole
states investigated by Chase, Kelly, and Kohler. '
Most excited states fall, however, outside the
scope of this method, and because of the great
interest in such states it would be highly desir-
able to find a MBPT method capable of handling
degeneracies. This problem was first solved by
Bloch and Horomitz'o using Brillouin-%igner per-
turbation theory for particles outside closed
shells. Brandow" rederived the Bloch-Horomitz
results and cast them in a "completely linked"
form, and similar methods, differing in deriva-
tion and diagram representation, have appeared
since."'" The present work uses the diagram
expansion and representation introduced by
Brandow. "

The rules for drawing and calculating the ener-
gy diagrams will not be described in detail, as
they may be found in the original papers. '
Some differences between Goldstone and Brandow
energy diagrams shall, however, be noted. ln

the Brandow formulation, unperturbed one-elec-
tron orbitals fall into three classes: (a) core or-
bitals, occupied in all of the Slater determinants
which form the unperturbed degenerate space;
(b) valence orbitals, occupied in some of these
determinants; and (c), intermediate (or particle)
orbitals, unoccupied. Unlike the Goldstone ener-
gy diagrams, the Brandow diagrams are open

(see Figs. 1 and 2'j, with the incoming (and out-
going') lines representing a particular occupancy
of the valence shell, corresponding to one of the
unperturbed degenerate Slater determinants.
The internal lines may be hole lines (summed
over core orbitals), particle lines (summed over
intermediate orbitals and, with certain restric-
tions, "over valence orbitals'I, and folded lines
(summed over va, lence orbita, ls). All linked dia, —

grams with the incoming state i and outgoing
state j are combined to obtain the ij element of
the secular matrix, which is then diagonalized to
yield the perturbative energy correction as mell
as the projection of the perturbed functions upon
'tile unperturbed degenerate space (1.8., tile lllleal'
combination of the degenerate unperturbed states
reached from the perturbed function upon turning
the perturbation off adiabatically). ""

The Brandow technique is applied in this paper
to the four lowest excited Z' states of the hydro-
gen molecule at A= 1.4 bohr. The unperturbed
functions of these states may be written as

g, = 2 '~'A(anb p a bua p),
where the plus and minus signs apply to singlet
and triplet states, respectively, a is the 10 or-

FIG. 1. First- and secon.d-order diagrams. A cross
denotes the one-electron part of the perturbation. Dia-
gram (d) can be inverted.



VoavMz 31,NvMszR 22 PHYSICAL REVIEW LETTERS 26 NOVEMBER 1/73

TABLE I. Electronic energies (in a.u.) of ~+ excited
states in H&, 8 = 1.4 bohr.
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Efartree potential
—0.75543 —0.72447
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—0.04343 —0.05489

0.01120 0.02228
—0.00230 —0.00643
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—1.89621 —1.67881

0.43991 0.34867
—0.03820 —0.08059
—0.00220 0.00956
—0.00013 —0.00101

—0.72447
—0.67561
—0,03462

0.01000
—0.00224

—1.67881
0.28762

—0,03460
0.00024
0.00000

~Estimated; see text.

FIG. 2. Third-order diagrams. A circle denotes a
folded line, Different diagrams which are numerically
identical are given the same name. Diagrams (e), (g),
and (i) can be inverted.

bital, and b is the 20 orbital for gerade states
and the 1o„orbital for ungerade states. Two
simplifieations to the general Brandow formula-
tion apply here. First, there are no core orbit-
als, and diagrams with internal hole lines need
not be taken into account. Second, while the de-
generate space for each of these states is two-di-
mension3l, the linear combination corresponding
to each state is of course known [Eq. (1)] and no
secular equation has to be solved. It is easily
shown that the perturbation energy is given by

~ = (anbP
~
W

~
anbP) + (anbP

~
W

~ bnaP), (2)

where the orbitals and signs are the same as in
Eq. (1), and the operator W represents all Bran-
dow diagrams, with incoming orbitals written to
its left and outgoing orbitals to its right. The
triplet states may of course be also described by
a single determinant A(anbn'I and treated by the
usual Goldstone expansion. An order -by-order
comparison of the two calculations may serve as

a check on the enumeration and evaluation of the
diagrams.

The basis set used in this work is the 10s5Pld
Gaussian set employed by Schulman and Kauf.-
man' for the ground state of H, Other recent
work"'" also indicates that basis sets consisting
of a finite number of bound-type orbitals are ap-
plicable to MBPT atomic and molecular c31cula-
tions. We tried a limited amount of exponent
variation, but no significant changes in diagram
values were obtained. Two zero-order potentials
were used to obtain the unperturbed orbitals.
One set of orbitals was calculated in the field of
the nuclei and one 40'& electron, corresponding
to the Hartree potentials or Kelly's'6 VP ' An-
other set of calculations was performed with the
bare-nucleus potential. " The same orbitals gave
good results for the molecular ground state. '"
Being able to handle several molecular states
with the same set of orbitals is highly desirable,
both because of saving in computational effort
and the relative ease of calculating transition
probabilitie s.

Diagrams contributing to the electronic energy
in the first and second orders are collected in
Fig. I, and third-order diagrams are shown in
Fig. 2. The one-electron potential added to the
kinetic energy and nuclear attraction terms to
form the zero-order Hamiltonian appears in the
perturbation operator with a minus sign, ' and is
denoted by a cross. The dashed horizontal lines
represent the electron repulsion operator. The
cross interaction vanishes for the bare-nucleus
potential, and diagrams including it do not ap-
pear in this ease.
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TABLE II. Total electronic energy (in a.u.).

Hartree
potential

Bare-nucleus
potential Accurate'

@fg+
U

b3Z+
U

Efg +

,s~ K
g

—1.4214
—1.4978
—1.4050
—1.4269

—1.4210
—1.4968
—1.4022
—1.4256

—1.4200
—1.4984
—1.4062
—1.4279

Bef. 19.
Interpolated.

The order-by-order contributions to the elec-
tronic energy, up to third order, are presented
in Table I. Higher-order corrections are esti-
mated by assuming that contributions of consecu-
tive orders, beginning with the second, form a
geometric progression. Results obtained for the
triplet states using the Goldstone diagrams agree
with the values in Table I to the number of fig-
ures given there.

The errors in our final energy values (Table
II) are of two kinds. The expansion error, due
to the incompleteness of the basis set used, may
be estimated by comparing our bare-nucleus re-
sults with those of Goodisman, "obtained with ex-
tensive sets of James-Coolidge-type functions.
Agreement is better than 10 ' a, .u. , and similar
convergence with respect to the basis set is ex-
pected for the Hartree potential. The second,
more serious error results from the approximate
inclusion of the higher-order corrections. We
estimate this error as (1-2) &&10 ' a.u. Compari-
son of the calculated electronic energy of the
four excied Z' states with the accurate values of
Ref. 19 (see Table ID shows agreement to about
1 kcal/mole, within the error limits quoted. The
only exception is the bare-nucleus calculation of
the 'Z ' state, where the somewhat larger error
can probably be ascribed to the proximity of an-
other 'Zg' level, with 1o„' configuration. Bran-
dow's method is flexible enough to ha, ndle quasi-
degeneracy" by counting 1o„as a valence orbit-
al, but this complicates the calculation some-
what and has not been done here. The 1o„orbit-
als will have to be included in the valence set at

larger internuclear separation, where the two
'Z ' states approa. ch and eventually cross. The

8
agreement between results obtained with the two
potentials is remarkably good, considering the
large differences between zero-order energies.

In conclusion, we have shown that Brandow's
method of folded dia, grams is applicable to excit-
ed, degenerate molecular states. Another possi-
ble application is in cases of quasidegeneracy.
Further investigations using this method are in
progress, and it may be reasonably expected that
it should prove as useful to excited-state calcula-
tions as the use of Goldstone diagrams did for
molecular ground states.
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