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Evidence for Scaling of Semi-inclusive Cross Sections between 13 and 205 GeV/c
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Semi-inclusive invariant cross sections for 7~ produced in pp interactions at 205 GeV/
¢ are compared, at fixed n_/{n_), with data at lower energies ranging from 13 to 28.4
GeV/c. Except in the central region (x = 0), the data are found to be in good agreement

with the predictions of Koba, Nielsen, and Olesen for semi-inclusive scaling.

Since the intersecting storage rings at CERN
and the 300-GeV synchrotron at the National Ac-
celerator Laboratory came into operation, a
great deal of interest and effort have been con-
centrated on the search for systematics in high-
energy collisions. It is now commonly accepted
that for inclusive reactions such as

p +p -7 + anything, (1)

the scaling of invariant cross sections in the
fragmentation region seems to be a valid prin-
ciple and that in the pionization region (x= 0),
the invariant cross sections are approaching
asymptotic scaling’ at a rate of roughly py., V%
When a 47 solid-angle detector such as a bubble
chamber is used to study Reaction (1), one of the
most accurately determined quantities is the to-

tal number n of charged particles in a given event,

This quantity is not an explicit variable in most
models for inclusive reactions.

It was proposed about a year ago by Koba, Niel-
sen, and Olesen? (KNO) that there exist scaling
laws applicable to the so-called “semi-inclusive
reaction.,” A semi-inclusive reaction is an in-
clusive reaction, such as Reaction (1), for a
particular topology. An example would be

p+p—=1"+(n-1) charged
+ anything neutral. (2)

Assuming that Feynman’s scaling function

f<q)(x17 Pl.nxz’ PJ.2, e 7xq’ p.Lq)
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is nonsingular at x,=x,=+++x,=0, and that it ap-
proaches scaling rapidly as s -+, KNO proved
that
— On — 1 n -2

P e Gy Y v @
to the highest order in Ins. In Eq. (4), ¥ is an
unknown function of n/{xn) only, and ¢(In~%s) rep-
resents a correction which varies, at most, as
fast as the inverse of In%s, In spite of the expli-
cit asymptotic nature of Eq. (4), KNO’s first
semi-inclusive scaling law (hereafter referred
to as KNO-I) appears to be satisfied in the 50-
to 303-GeV/c region. Slattery® has shown that
the product (n) P, when plotted versus n/(n) fol-
lows a universal curve independent of s.

KNO further predicted? that the semi-inclusive
invariant cross sections should also scale as-
ymptotically, For Reaction (2), the semi-inclu-
sive 7~ invariant cross section, defined by

- - 1 d
&n (srx-’pl)Eo_ E—'_/oz—w_’ (5)

should scale as
&gn ey p ) =hxo,p . no/(n)
x[1+¢(1/1ns)], (6)

where the minus subscript and superscript stand
for 77’s, and % is an unknown function indepen-
dent of s. Equation (6) is referred to as KNO-II,
In this Letter, we report a test of this scaling
law using pp interactions at 205 GeV/c as com-
pared to data from similar reactions between
13.0 and 28.4 GeV/c. The high-energy data were
obtained from an exposure of the 30-in, hydrogen
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bubble chamber at the National Accelerator Lab-
oratory to a proton beam of 205-GeV/c incident
momentum,® and the lower-energy data were ob-
tained using the Brookhaven alternating-gradient
synchrotron and the 80-in. hydrogen bubble cham-
ber. Measurements for the 13.0- to 28.4-GeV/c
events were done at Lawrence Berkeley Labora-
tory and processed through the TVGP system at
Michigan State University. Since K~ and p con-
taminations below 30 GeV/c are believed® to be
no more than ~3%, all negative tracks were in-
terpreted to be due to 77’s, Partially integrated
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FIG. 1. Comparisons of semi-inclusive invariant
cross sections at fixed n./{(n.). Data shown in the x
and y 1, distributions have been folded and averaged
about 90° in the c.m. system. In the p,° distributions,
data have been integrated over x. Good agreement with
KNO-II is seen in the data except near x=0,

invariant cross sections for six through fourteen
prongs from the 205-GeV/c data are shown in
Fig. 1 as open circles.

According to KNO-II [Eq. (6)], these cross sec-
tions should scale with the reduced negative mul-
tiplicity, n./(:.), that is, should be identical to
those at a different s, and a different topology
but the same n_/{u_) ratio. Table I shows the
averaged negative multiplicity for pp interactions
at 13.0, 18.0, 21.1, 24.2, 28.4, and 205 GeV/c.
Holding n_/{(n_) constant, six prongs at 205 GeV/
c are to be compared with four prongs at 28.4
GeV/c, eight prongs at 205 GeV/c with 18-GeV/
¢ four prongs, and so on. Figures 1(a), 1(d),
1(g), 1(k), and 1(p) show the 7~ semi-inclusive
cross sections integrated over p,? and folded
and averaged about 90° in the c.m. system. Here
one finds good agreement between the high- and
lower-energy data except in the central region
(x=0). This is similar to discrepancies observed®
in comparing 7~ inclusive cross sections at 28.5
and 205 GeV/c. Figure 1 indicates that the non-
scaling behavior in the central region is not re-
stricted to particular topologies. In the fragmen-
tation region, the good agreement between these
two sets of data is remarkable in view of the fact
that comparisons are being made between differ-
ent energies and different topologies. It should
be noted that comparisons made between semi-
inclusive invariant cross sections at fixed » show
poor agreement. Comparisons of the laboratory
rapidity distributions are given in Figs. 1(b),
1(e), 1(h), 1(m), and 1(r). The cutoff on the left-
hand side of the figure is at 90° in the c.m. for
the lower-energy data. Again, discrepancies in
the central region exist, while good agreement
is observed in the fragmentation region. In Figs.
1(c), 1(f), 1(j), 1(n), and 1(s), semi-inclusive
cross sections integrated over x are plotted ver-
sus p,%. The KNO scaling prediction is well sat-
isfied for all values of this variable.

TABLE I, Averaged negative nultiplicity (n.).

Energy
(Gev/c) (n.)
13.0 0.83+0.02
18.0 1.02+0.02
21.1 1.15+0,02
24.2 1.24+0.02
28.4 1.30+0.02
205 2.83+0.09

1321



VoLUME 31, NUMBER 21

PHYSICAL REVIEW LETTERS

19 NOVEMBER 1973

In view of the fact that Feynman’s scaling hy-
pothesis fails in the central region and one of the
basic assumptions of the KNO predictions is the
rapid approach of asymptotic scaling as s - «, it
is interesting to ask if the apparent success of
the two KNO semi-inclusive scaling laws can be
induced by physical pictures other than Feyn-
man’s scaling hypothesis. KNO? have pointed out
that the energy independence of the ratios %)/
" ¢=2,3,4,..., is equivalent to KNO-I [Eq.
(4)]. Published data® from 19 to 303 GeV/c indi-
cate that the ratios (#%)/(n)? are approximately
constant above 50 GeV/c for all g values. Ar-
nold” has argued that the success of KNO-I in the
50- to 303-GeV/c region is only a low-energy
phenomenon and the asymptotic form of the scal-
ing function is that of a 0 function. The energy
dependence of ¥ can be seen in Fig. 2. Open
points are from the low-energy data, and the sol-
id curve is from Slattery’s fit to the 50- to 303-
GeV/c data. Values from 50 to 69 GeV/c are
shown as black circles. It is obvious that 50-
and 69-GeV/c data are well described by the
curve, whereas the lower-energy points indicate
a narrower distribution. Therefore one may con-
jecture, on the basis of data below 303 GeV/c,
that the width of ¥ grows larger for increasing
s. Such a trend has been shown®™!° to be consis-
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FIG. 2. Energy dependence of the KNO-I scaling func-
tion. The solid curve is from a fit to 50~303-GeV/c
data by Slattery. A trend for the distribution to become
broader with increasing s is observed,
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tent with a two-component picture, that is, an
energy-independent diffractive component plus
an energy-dependent nondiffractive part. Howev-
er, within the spirit of such a model, the asymp-
totic form of ¥ is expected to be two 6 functions,
one at n/{n)=0 for the diffractive component and
one at n/{n) =1 for the nondiffractive component.
Therefore, according to the two-component pic-
ture, the shape of the ¥ function shown in Fig. 2
merely indicates that the asymptotic region for
semi-inclusive scaling is still far off. Turning
to KNO-II, Eq. (6) is a mathematical consequence
of KNO-I being true and the energy independence
of the ratio

f(q+ 1)(x-’P.L-’ 0,0,.. -,0)
[f(l)(o)]q

- constant for all ¢, (7)

where f“*V(x _,p,7,0,0,...,0) stands for the
Feynman scaling function [Eq. (3)] integrated over
transverse momenta for all particles other than
the 7~ and evaluated at x,=x,=...=x,=0. Since
KNO-I is known not to be valid below 50 GeV/c,
the agreement with KNO-II from 13 to 205 GeV/c
can be induced by the function ¥ and the ratio
given in Eq. (7) having similar energy dependence.
The apparent success of KNO-II should be viewed
as an empirical fact and may serve as a constraint
to theoretical models such as the two-component
model.
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