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within the experimental uncertainty. The final
rise in the curve represents the zero-sound re-
gime; in this regine, however, Eq. (3) ceases to
be valid. We also would like to comment on the
excellent fit that was obtained above the knee,
which justifies to some degree our choice of g,
It should be realized that a more accurate theory
would have to take into account the hexagonal
symmetry of the crystal as well as the quantum
solid character of solid helium. These calcula-
tions are at present not available.

The one outstanding difficulty in comparing
¹klasson's theory with experiment is the large
ratio ~'/w" required. To some degree this may
reflect the use of an isotropic version of the
theory where proper hexagonal symmetry should
have been used. We feel, in spite of this, that
the effect is too large to be exclusively due to
this source. We want to remark here that 7'
corresponds to a length l = v, T', where v, is the
second-sound velocity, giving the range of the
coupling between local phonon flow and lattice
deformations. Our results seem to indicate that

this range is much larger in solid helium than
l.n a quasQlarDlonlc solid with anhal monlc cor-
rections for which the theory of Niklasson was
developed.

We wish to thank Rene Wanner for the initial
design of the ultrasonic apparatus and for fre-
quent discussions.
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Exact Solution of an Ising Model with Three-Spin Interactions on a Triangular Lattice

R. J. Baxter and F. Y. Wu*t
Research School of Physical Sciences, The Australian National University,

Canberra, Austria/ian Capitol Territory 2600, Australia
(Received 18 September 1973)

The Ising model on a triangular lattice with three-spin interactions is solved exactly.
The solution, which is obtained by solving an equivalent coloring problem using the Bethe
Ansatz method, is given in terms of a simple algebraic relation. The specific heat is
found to diverge with indices o.'=o" =3.

An outstanding open problem in lattice statis-
tics has been the investigation of phase transi-
tions in Ising systems which do not possess the
up-down spin-reversal symmetry. " A well-
known example which remains unsolved to this
date is the Ising antiferromagnet in an external
field. Another problem of similar nature that
has been considered recently' ' is the Ising mod-
el on a triangular lattice with three-body inter-
actions. This latter model is self-dual so that
its transition temperature can be conjectured"
using the Kramers-Wannier argument. ' How-

ever, the nature of the phase transition has hith-
erto not been known.

We have succeeded in solving this model ex-
actly. In this paper we report on our findings.
It will be seen that the results are fundamentally

different from those of the nearest-neighbor Is-
ing models. While the final expression of our
solution is quite simple, the analysis is rather
lengthy and involved. For continuity in reading,
therefore, we sha11 first state the result. An

outline of the steps leading to the solution will
also be given.

Consider a system of N spins 0,. =+1 located
at the vertices of a triangular lattice L. The
three spins surrounding every face interact with
a three-body interaction of strength —J, so that
the Hamiltonian reads

with the summation extending over all faces of
Let Z be the partition function defined by (1).

We find the following expression for Z~~ in the
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thermodynamic limit:

where t=sinh2K, with K=
I JI/kT, and 1-y&~ is

the solution ot the algebraic equation

(y —1)'(1+ 8y) /y' = 2(1 —t) '/t(1+ t').

The function IVV(t) is unique since y is single
valued in f for 0- f& ~. It is also seen that in%
has a singular part which behaves as )g —Il+'
near g= I. It follows that a phase transition oc-
curs at t= 1 or kT, /I JI= 2/1n(v2+1) =2.269185... .
This confirms the duality prediction" which
merely reflects the invariance of the right-hand
side of (8) under the transformation t —t '. The
energy and specific heat per spin, F and c, re-
spectively, are plotted in Fig. 1. The energy
has the critical value F.,= —v2 IJ I, while the spe-
cific heat diverges near T, as

c -
—,'i[in(v2+ 1)]~'~ 1 —T/T, ~

't'.

This is in contradistinction to the logarithmic di-
vergence of the nearest-neighbor models, and to
the result e = n'= —,-' of the isotropic three-spin
model on the "Union Jack" lattice '

Two key steps are involved in our approach.
The Ising model (1) is first converted into a color-
ing problem; the latter is subsequently solved us-
ing a generalization of the Bethe Ansatz method. '
We now outline these two steps separately.

Conuexsion into a coloring pxoblem. Fhe tri-
angular lattice L is composed of three sublattiees
L» L„andL, with the property that the sites
of L,. and L, form a hexagonal lattice L;, . Two

such lattices, L» (solid lines) and L» (broken
lines), are shown in Fig. 2.

We first carry out a dual transformation for
the spins on L» while leaving the spins on L un-1

changed. The effect of the dual transformation
is to introduce an additional variable p, = + I to
each face of L»." Thus we may specify the states
of the sites of L, by the four-valued variable (o
p). Furthermore, to each neighboring pair (o .

5 0

p, ;) and (o, , p., ) of L„the dual transformation
yields a weight factor

(u,„=2 ~'(exp[K(o,. + v, )]

+ p, p., exp[- K(cr,. + o,)]]. (5)

The partition function is then given by

& =&II~;„ (6)

where the summation is extended over all states
(o, , p, ) and the product over all nearest neighbors
of L,.

Next, for each nonvanishing term in (6) we as-
sociate colors I, 3, 5, 7 to the sites of L, accord-
ing to the rule

(+, +) =color 1, (—,+)=color 8,

(—,-) = color 5, (+, -) = color 7.

It is clear from (5) that two neighboring sites of
L, cannot be colored I, 5 or 3, 7. Thus we may
further color the sites of L, with colors 2, 4, 6, 8
under the restriction that the colors of neighbor-
ing sites on L» differ by exactly 1 (to modulus

8, i.e., 8 and 1 can be adjacent). Note that we
have just completed a site coloring for L». Now

we introduce activities to the colors:

2,0— 0.0
z, =z, =z, =z7= I

z, = I/@4=A~ = 1/@8= sinh2K.
(8)
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FIG. l. Energy (E) and specific heat (c) per spin.
FIG. 2. Decomposition of L . Solid lines denote L i8 ~

broken lines denote L &&.
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Z, =Qz, "~z,"2 ~ z,"8 (10)

is the generating function for the site coloring of
L,x~

Solution of the coloring Problem D.
—raw arrows

on the edges of the dual triangular lattice L~ of
L», pointing to an observer's left (right) if the
colors on L» increase (decrease) as he crosses
the arrow. Then at each vertex of L~ there are
three arrows in and three out. Hence our color-
ing problem bears the same relation to the "tri-
angular ice»» model" as the three colorings of
the square lattice" do to the "square ice"" mod-
el. In particular, since z, =...=z, =1 when T= T,
and t= I, it follows that at the critical tempera-
ture the coloring and triangular ice models are
equivalent, so from (9) and Eq. (41) of Ref. 11
one obtains W, = v6. This agrees with (2).

To obtain W for the more general activities (8),
number the sites in each row of L» as in Fig. 2,
using cyclic boundary conditions as indicated.
Let C = {c„..., c„jbe the coloring of the upper
row of sites 1, ..., M, and C' = (c,', ..., c„'jthe
coloring of the lower row. Introduce the transfer
matrix

M

A(C, C ) = II(z, . z ...)~'

It can be verified that the activities of the pos-
sible colorings of a site on L, surrounded by sites
(&, , p, ;), (o;, p, , ), and (v„,p„)of L, (cf. Fig. 2)
generate precisely the product (2 sinh4K) '+, ,a,„~„,
Using (6), we are thus led to the identity

Z =(2sinh4K)"l'g
„

where

ar rows pointing down on the efges of L~. Ther e
are the same number n in every row, so we can
consider some fixed value of n between 0 and
2M.

Let A and f be an eigenvalue and eigenvector
of A, respectively, and f(m, X) the element of
f corresponding to the row coloring (12). Then
the eigenvalue equation is

&f(xx X)=E jI2x(max;+X, —2j))
Y j=l

xf(m+ 2, 1),
where

u (m) =-(z z „)~',

(14)

Z 3/2N A 1/M
c max (18)

where A, ,„

is the maximum eigenvalue of (14).
We try the generalized Bethe sensate

f(m, X) =pa(P) II (t~ (m —2j,x, ),
P

where the summation is over all nt permutations
P=(P„..., P„jof the integers 1, ..., n. The co-
efficients a(P) and the n functions qr, (m, x) are
at our disposal. We require that there exist n
wave numbers k„..., k„such that

y, (m, x) = (p, (m+4, x)

f(m+2, 0,x„..., x„)=f(m, x„..., x„,M), (16)

and the summation is over all F&D such that

iy„-x,+ li --,'C1+(- 1)" ],
and if x,.=x,„,then y,.cy,-„.For a large lattice
of 2N/3 sites,

if the colors of adjacent sites differ by 1; other-
wise A(C, C ') = 0.

Consider a basic sequence fm, m +1, m+4, m+5,
m+8, m+9, ...j of colors in a row, which cor-
responds to a row of arrows pointing up on L~,
and then introduce n dislocations at positions
X = {x„..., x„jin the sequence so as to define
C by the rules

= exp(2ik, ) y, (m, x —2)

for all integers m, x. We find that the sensate
works: Let F, be defined by

cosh2E =cos2A' +I;+t

then A and k„..., k„are given by

lnA =Q(E, —ik, ),

(20)

{21)

(22)
c~=m c ~~=c„+2+(—1) —2 „nx (12)

1 ~x ~x ~ ~x ~M
1 2 ~'~ n (13)

no two odd x,.'s equal, no four even x,.'s equal.
These dislocations correspond to there being

where x =-1, ..., M and n„is the number of dislo-
cations in position x (between sites x and x+1).
To be consistent with the coloring rule, X must
lie in the domain D:

n

exp(iMk, ) = —Q B,„j= 1, 2, ..., n, {23)

with B,, = —cosh(E,. + ik,)/cosh(E, + ik, ) [f k„... ..
k„arereal, then from (21) B,, is unimodular.
Also, by using elliptic functions we can change
variables from k,. to u, so as to make B,r a func-
tion only of u u r ~

For A~,
„

the equations (23) can therefore be
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solved in the limit of I, n large by methods sim-
ilar to those used for the normal Bethe Animate. ""
Using (22), (18), and (9) we then obtain the re-
sult (2).

We intend to give details elsewhere. We re-
mark that 0„..., k„arereal and distributed sym-
metrically over the interval ( —sv, 2w), that n =M,
and that F.„..., E„arereal and non-negative.

One of us (F.Y.W.) wishes to thank Professor
K. J. Le Couteur for his kind hospitality at the
Australian National University.

Added note. —Numerical estimates of the criti-
cal indices o.", P, and y' of the present model
have recently been given by H. P. Griffiths and
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Clarification of Local-Moment —Conduction-Electron Resonance*
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Our data on spin resonances in ~-Er are inconsistent with the JS.s model, and bare-
ly consistent with J(&,&'}. Alternatively, a suggestive temperature dependence cf the
JS s conduction-electron g value is compatible with the data. We present general kinet-
ic equations for a local-moment-conduction-electron system. We clarify questions of
detailed balance, relaxation to exchange fields, positive energy absorption, and reduc-
tion of the kinetic equations for any possible model to either of two standard forms.

We present results for the electron spin-reso-
nance parameters for the local-moment —conduc-
tion-electron spin system Ag-Er. This system
is characterized by two widely separated reso-
nances (the g value for the conduction electrons
is ~2.0, while for Er, g=6.8), which are cou-
pled via an exchange interaction. In the course
of our efforts to analyze this system we have
completed a. theoretical and computational study
which we believe resolves important questions,
and raises new ones, concerning the dynamical
description of a dilute local moment in a metal.

The experiments were performed utilizing the
transmission electron spin-resonance (TESR)
technique. ' The samples were typically single-
crystal foils 0.002 em thick containing between
20 and 70 ppm of Er in Ag. ' The sample tempera. —

ture was varied between 1.25-30'K. The signal
in the TESR technique is defined as the projec-
tion of the transmitted microwave field on a ref-
erence field of the same frequency. The data are
taken at fixed temperature, frequency, and ref-
erence phase angle, while the applied dc field is
slowly swept through the resonance conditions.

In Fig. 1 we present such a transmitted signal
versus dc field where the phase of the reference
has been chosen so as to yield a symmetric high-
field resonance (HFR). The low-field resonance
(LFR) is clearly seen and for the particular set
of conditions also appears symmetric. ' The gen-
eral properties of the resonances are the follow-
ing: The LFR amplitude (g

=—6.84) is slightly
larger than the HFR at 1.3'K. The LFR broadens
linearly with temperature, and the amplitude de-
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