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Measurements of the longitudinal sound velocity of single crystals of hcp He4 are re-
ported from 0.7 K to the melting temperature at melting pressures of 86 and 119 bar.
The temperature dependence changes from a power law to approximate temperature
independence below about 1.1 K at P~ =86 bar and below about 2 K at PAL=119 bar. It is
believed that this marks the transition from adiabatic sound propagation to a region
where coupling to the temperature field is important.

We are reporting on measurements of the
sound velocity of single crystals of hcp He' from
0.75 K to the melting temperature at densities
corresponding to melting pressures of 86 and
119 bar. In most of the crystals studied, the
temperature dependence of the sound velocity
shows an abrupt change at some point between 1
and 2 K.

Crystals of hcp He' were grown at constant
pressure over a period of 24 h. After initial
growth, the crystals were annealed in a tempera-
ture gradient of about 1 K. This annealing pro-
cedure frequently produced crystals of very high
quality. Near the melting temperature we have
observed up to 160 ultrasonic echoes in these
crystals. We believe that many of the crystals
were single. The crystals were contained inside
a beryllium-copper pressure cell, which also
contained the ultrasonic etalon. Measurements
were performed at 5 MHz provided by a longitu-
dinally cut quartz tranducer in its fundamental.
A pulse reflection method was used, with a trans-
ducer to mirror distance of 0.957 cm. This dis-
tance was obtained by calibrating against the
sound velocity in liquid He' using the results of
Vignos and Fairbank. ' The reflecting mirror
was the bottom of the pressure cell, polished
flat to 2 wavelengths of sodium light.

An absolute value for the sound velocity was
obtained near the melting point from a least-
squares fit to the arrival times of about twenty
echoes. We estimate the error in this measure-
ment at about 2%. The change in sound velocity
with temperature was measured by observing
the phase shift in the high-frequency signal to 1

part in 10'. For this purpose the high-frequency
signal mas displayed on an oscilloscope with the
delayed time base triggered coherently with the
pulsed oscillator providing the ultrasonic signal.

Temperature measurements were made with a
Solitron germanium thermometer calibrated
against the vapor pressures of He' and He'.

The sound velocity increases with falling tem-
perature, as seen in Figs. 1 and 2. In most crys-
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FIG. l. v (&)/v (0) for a crystal grown at 119.6 bar.
Solid line, least-squares fit by Eq. (3) with r =237
v& ——1.5&U(expt), and &~ ——1.5'(expt).
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FIG. 2. v (T)/v(0) for a crystal grown at 86.4 bar.
Solid line, least-squares fit by Eq. (3) with T =1.97",

&T= .02 T(ve pxt), and &T=1.5r~(e pxt).

The characteristics of sound propagation in a
dielectric depend on interactions between the
sound wave and the phonon bath. We character-
ize this interaction by two phonon mean free
paths: X„ for resistive (i.e. , not momentum con-
serving) processes, and X~ for normal processes.
For adiabatic sound propagation the sound wave-
length A. must be in the range

tais we observe a rather abrupt flattening out of
the velocity as a function of temperature. We
refer to the position where this occurs as the
"knee. " Possible small variations of the velocity
in this range could not be detected with our tech-
nique because of the drastically increased attenu-
ation that is observed in the region of the knee
and below. In Table I we show the position of the
knee for all cases observed. Included in the
table is the absolute velocity at 0 K [obtained
through extrapolation using Eq. (9) below] . We
compared these velocities with velocities calcu-
lated from elastic constants' in order to obtain
an estimate of the angle between the hexagonal
axis and the direction of sound propagation. For
all crystals grown at 119 bar this angle lies in
the range 40' to 90 . In this range the velocity is
double valued and changes relatively slowly with
orientation. In view of this we are not able to es-
tablish the orientation of these crystals beyond
the above estimate. For the measurements at
86 bar the crystal showing the fast velocity (778
m/sec) appears to be close to 0', whereas the
other two can be anywhere in the range 40 to 90 .
Because of these large uncertainties we are at
present not able to draw any conclusions about
the influence of orientation on the observed effect.

A„ increases with falling temperature, and sound
will therefore not propagate adiabatically below
a temperature given by X= A.„. If at this tem-
perature one also has A. ~ A.„, the propagation will
become collisionless. It is, however, also pos-
sible, depending on the wavelength A., that a so-
called "second sound window" exists:

A.g & X & A.~. (2)

In the temperature range in which the condition
(2) holds, second sound can be excited in situ
(the condition for its observation over macro-
scopic distances is more stringent). ' In this
case the transition from adiabatic to collision-
less sound will take place over an extended tem-
perature range. In the transition region coupling
to the temperature field is important.

The phonon mean free paths A.„and A.~ of hcp
He' have been experimentally determined from
thermal conductivity" and second-sound data. '
For A~ we used the data of Hogan, Guyer, and
Fairbank. '

~~ was assumed to be essentially
equal to the umklapp mean free path x~, for
which we used at 86 bar the extensive data of
Lawson and Fairbank. ' To obtain data for ~~ at
119bar we extrapolated the data of Ref. 6 accord-
ing to the suggestions of Hogan, Guyer, and Fair-
bank. The procedure probably introduces some
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Here p is the density, I(.„ is the isothermal com-
pressibility, s is the ratio of second-sound to
first-sound velocity and is given in terms of the
longitudinal and transverse velocities by

~v /1 1+2(v, /v, )'
v ~3 1+2(v, /v, )'

The damping constants I' and I', 'are given by
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~
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The various relaxation times in these expres-
sions represent different processes and are giv-
en by

1/yz —-1/w~+ v/d,

where g U is the umklapp relaxation time, d is of
the order of the cell dimension, and the term v/
d represents boundary scattering;

00 2 (Vl Vt )
2 S)2 Ti

error into the X~ at this pressure. XU is aniso-
tropic; we have here used the average for a pow-
der. In Figs. 1 and 2 we indicate the tempera-
tures at which A. =A.„and A. =A. U. It can be seen
that a second-sound window does exist at both
densities and that it covers approximately the
range of the anomalous velocity behavior. Be-
cause of the anisotropy of X~ (a,s well a.s other
effects like remaining lattice imperfections),
one expects certain scatter in the onset of the
transition region. This scatter is observed, but
at present we cannot make any definite comment
on its dependence on the propagation direction.
We conclude from this comparison that the ob-
served anomaly is the transition from adiabatic
sound propagation to a regime where coupling to
the temperature field is important. The measure-
ments did not extend to low enough temperatures
to observe the transition to collisionless sound.

In order to discuss this in more detail we make
use of the work of Niklasson. ' For the isotropie
ease one ean obtain from Niklasson's results the
following expression for the sound velocity:

(' 1 1/pa, , C

1/r = 1/~„+1/T„. (8)

1293

T~ is the normal-process relaxation time. The
relaxation times 7" and T' correspond to pro-
cesses affecting the local phonon streaming velo-
city, 7." corresponding to phonon diffusion and
q
' to coupling to the strain field. Niklasson

shows that y" and 7' should be of the same or-
der as g. We set, therefore,

(9)

and treat v'/T" as a.n adjustable parameter.
The relaxation times used are related to the pho-
non mean free paths by zv = X~/VD, X„/VD, where

v~ is the Debye velocity. Since v~ is anisotropic,
we have used an average value corresponding to
a powder average. For v& and v, we have taken
typical velocities at our densities obtained from

2= 1r
pv, =c» and pv, = (c„-c„),

where c» and c» are the experimentally deter-
mined elastic constants. ' These velocities cor-
respond to the basal plane. The numerical val-
ues used for C~/C„, finally, were those given by
Jarvis, Ramm, and Meyer. ' In fitting our data
by Eq. (3), we also have to make an assumption
about the velocity v,, which is not accessible by
experiment. v,, represents the velocity of first
sound in the absence of coupling to the local tem-
perature, and we assume for this the simple pow-
er law

v, , = v(0) —aT" .

The exponent in here should be close to n=4, but
was actually chosen as the exponent of the tem-
perature dependence of C~/C„—1,

C~/C, —1 =AT"~.
From the experimental data of Ref. 8, we obtain
ll = 3.79 at p = 86 bar and n = 3.58 at p = 119 bar. A
least-squares fit of our data with Eq. (3) was
then obtained, treating v(0), a, and 7'/r" as ad-
justable parameters. We allowed for small vari-
ation in v~ and g ~, but these changes were kept
small and are probably not significant. We found,
however, typically that T' had to be increased
above g by amounts varying from v /g =1.9
to w'/z" =45 for various crystals and densities.
Typical fits of this type are shown in Figs. 1 and
2 for the two densities investigated. As can be
seen, the "knee" is farily well reproduced. The
oseillations in the theoretical curve below the
"knee" were never observed, but are almost
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within the experimental uncertainty. The final
rise in the curve represents the zero-sound re-
gime; in this regine, however, Eq. (3) ceases to
be valid. We also would like to comment on the
excellent fit that was obtained above the knee,
which justifies to some degree our choice of g,
It should be realized that a more accurate theory
would have to take into account the hexagonal
symmetry of the crystal as well as the quantum
solid character of solid helium. These calcula-
tions are at present not available.

The one outstanding difficulty in comparing
¹iklasson's theory with experiment is the large
ratio ~'/w" required. To some degree this may
reflect the use of an isotropic version of the
theory where proper hexagonal symmetry should
have been used. We feel, in spite of this, that
the effect is too large to be exclusively due to
this source. We want to remark here that 7'
corresponds to a length l = v, T', where v, is the
second-sound velocity, giving the range of the
coupling between local phonon flow and lattice
deformations. Our results seem to indicate that

this range is much larger in solid helium than
l.n a quasQlarDlonlc solid with anhal monlc cor-
rections for which the theory of Niklasson was
developed.

We wish to thank Rene Wanner for the initial
design of the ultrasonic apparatus and for fre-
quent discussions.
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The Ising model on a triangular lattice with three-spin interactions is solved exactly.
The solution, which is obtained by solving an equivalent coloring problem using the Bethe
Ansatz method, is given in terms of a simple algebraic relation. The specific heat is
found to diverge with indices o.'=o" =3.

An outstanding open problem in lattice statis-
tics has been the investigation of phase transi-
tions in Ising systems which do not possess the
up-down spin-reversal symmetry. " A well-
known example which remains unsolved to this
date is the Ising antiferromagnet in an external
field. Another problem of similar nature that
has been considered recently' ' is the Ising mod-
el on a triangular lattice with three-body inter-
actions. This latter model is self-dual so that
its transition temperature can be conjectured"
using the Kramers-Wannier argument. ' How-

ever, the nature of the phase transition has hith-
erto not been known.

We have succeeded in solving this model ex-
actly. In this paper we report on our findings.
It will be seen that the results are fundamentally

different from those of the nearest-neighbor Is-
ing models. While the final expression of our
solution is quite simple, the analysis is rather
lengthy and involved. For continuity in reading,
therefore, we sha11 first state the result. An

outline of the steps leading to the solution will
also be given.

Consider a system of N spins 0,. =+1 located
at the vertices of a triangular lattice L. The
three spins surrounding every face interact with
a three-body interaction of strength —J, so that
the Hamiltonian reads

with the summation extending over all faces of
Let Z be the partition function defined by (1).

We find the following expression for Z~~ in the
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