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SU(B) in particle reactions involving pseudoscalar mesons is discussed in the frame-
work of chiral SU(B)(3SU(B) charge algebra, partial conservation of axial-vector current,
and asymptotic SU(3).

Naive application of SU(3) to particle reactions has met many difficulties. ' Meshkov, Snow, and
Yodh' first compared experiments with the remarkable exact SU(3) predictions

-', o(~ p- ~+~ ) =~(n p-Z'r+ )=~-(Z p-~'r*-)=~(SC p-Z-'-='-). -
(1a,)

With the hope of accounting for the effect of mass breaking, comparison of the cross sections at the
same Q value was suggested. a As shown in Fig. 1, while —,'o(m+6 )=cr(m" F* ) and o(&'p'* )=o.(&+=* )
are found to hold, there is a, vast discrepancy (of an order of magnitude) between these two groups.
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For another SU(3) prediction,

~(z p-- ~'z )-= ~(sc p--fc'=-'),

~(~-p -z'z-) =~(z-n-E.""=-),

(1.b)

(1c)
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it was also found' that whereas Eq. (1c) is ap-
proximately satisfied, Eq. (1b) is drastically
violated.

As a. possible broken SU(3) relation between the
lth partial wave amplitudes f, and f, ' of two
SU(3)-related reactions, Trilling' and Rosenfeld'
proposed the following one with a prescribed an-
gular-momentum barrier effect:

E
O. I—

b

f, (1/pz') = [SU(3) factor] f, '(1/pz"), O.OI—

,0 0
0where p, and p& denote the initial and final c.m.

momentum, respectively. If a partial wave anal- 0
ysis is not available, one may represent the ef-
fect of the barrier and phase space by the effec-

I I

tive angular momentum /, &&
——I, appearing in the 0.5 I.O I.5

total-cross-section relations o/pz' +' = [SU(3) C. M. Momentum (GeV/c)

factor]'v'/pz'2 +'. lt has been argued" that the
above prescriptions tend to remove the difficul- —~+~- ~y236& ~+yg- ~y~85~ g-p ~+@~-~~~85~
ties encountered and, in particular, the pheno- K+ * (1580). The three curves for 7tp-~D, ~p-~*,
menological choice I,,&&=—I.= 1 can resolve the and KP —A * are the predictions with the input reac-
vast discrepa. ncies met in Reaction (1a). tion KP &F* given by a hand-drawn solid curve.

The purpose of this paper is to demonstrate
that the effective angular-momentum barrier /, «

I, = 1 can ha—ve a reasonable theoretical basis in the framework of (a) chiral SU(3) SU(3) charge alge-
bra, (b) partial conservation of axial-vector current (PCAC) for Q,.', and (c) asymptotic S'U(3).

We first note that when combined with asymptotic SU(3), the imposition of the algebras [Q,,Q&J
=zf, ,,Q, and [Q, ,Q,.'] =if;,.„Q„' implies the following general result': (A) The matrix elements of Q, ',
taken only between the states of particles every one of which has infinite momentum, allow the usual
parametrization in terms of exa, ct SU(3) plus mixing.

Therefore, (a) and (c) prescribe for us where one can use exact SU(3) (including mixing) parametri-
zation in broken SU(3). We neglect SU(3) mixing in this paper.

Consider the following special case of our general result (A):

O.OOI
0

[(D(pD) I Q&'I& (p~)E(p, )& -fz"s",c' (D'F») IQ& 'I&'(L )E'(p, )&] = o
P~~ Pg ~pa

Here&', B', C', and D' are the SU(3) counterparts of A, E, C, and D, respectively, and by (c) each
of the SU(3) partners has the same momentum. f„~~,:AD~, is a unique number determined by the SU(3)
Clebsch-Gordan coefficients. We can now relate Eq. (3) to physical processes thanks to PCAC.

By using the PCAC relation Qc'= fcm 'fcpc(x) d'x and defining Jo = —(6 -~')po, we obtain (suppress-
ing helicity indices)

&DI Q, 'IAE& &(p, - p~ p, )fc~'(E„+E-,-E,) '(~' p, ') '(DIz, (0-)IAa&~.
Define

(E,)'"(Dlz, la@&(E„E,)'"=E and z, (s, t,p, ') = Q Iz I'.
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Then KcD~ is a Lorentz scalar and depends only on the invariant variables s = (pA +PB), t = (pD —pB)',
and pc' = (pA+pB-pD)'. We apply the limit )$A[, $J, /pe —~ with the conditions p,. ~ pD &0 and )p,. xpD[/
)pD[&~, where i=A and B. Then, s and t become finite and pc'-0. In this limit' (EA+EB —ED) '/
(EAZBED)" =2(s —mD') '([pD)/$A[ )pB))" and we obtain

Zt(DIqc'IAB)l'~ [ rc'.«~ I—,')'~K~~(B, ~, O)
I'x I'a I'D"" 't""

Therefore, Eqs. (3) and (5) lead to

2 2

2» KcD (B» c ) (fA'B'.c'D') I i 2)2 Kc'D' (s r t &mc' 0)
(s —mD ) (S —MDi

In the SU(3) limit, s = s' and t = t'. In broken SU(3) our limiting procedure yields some constraints
among the (s, t) and (s', t')

The differential cross section (in the c.m. system) for the reactionA+B-C(soft)+D is given by dc/
dg (pz/sp, )K~~(s, t, 0); thus Eq. (6) now gives the broken-SU(3) relation between the differential cross
sections involving one soft pseudoscalar meson:

AB CD
p g d&

A'B' C'D'

fC 3 d
(B,t) -

I fA'B".C'D'I fC' g3 der (B &t )& (7)

where we have used 2vspz=(s-mD'). Equations (6) and (7) are exact, in our framework, but are de-
rived under the assumption that both C and C' are "soft." We find, however, that Eq. (7) indeed in-
volves the /=1 effective angular-momentum barrier. Although the extrapolation from soft mesons to
physical mesons is a complicated matter, we expect that the extrapolation preserves the effective an-
gular-momentum barrier for physical processes. We can, in fact, demonstrate' this trend from the
reactions involving both the pion and kaon in the final states which allow the explicit comparison be-
tween the soft-pion and -kaon limits. Therefore, we assume that our formula (7) is also satisfied rea-
sonably well for physical reactions. The appearance of l,&, =1 for the tota, l cross section in Eq. (7)
suggest that the barrier effect for the partial wave may also take a form with I = 1 in Eq. (2).

For the decay processes where C and C' are the pseudoscalar mesons, we obtain an analogous SU(3)
relation for the width I" by using the same procedure:

fc'(I/Pg')&(A -B+C ) = If A" Bc I'fc'(I/P, ")I"(A'-B'+C').
, (8)

Equation (8) is again exact when C and C' are "soft," but we assume that it is a, iso valid for pkysical
mesons. From the appearances of Eqs. (7) and (8), one may be tempted to think that only the angular
momentum l =1 is actually contributing. However, the situation is vastly different. In our framework
of (a), (b), and (c) there arises an SU(3)-breaking effect on the coupling constants involved. When the
coupling constants are eliminated to obtain Eqs. (7) and (8), the net effect appears as the I =1 effective
angular-momentum barrier. We can show this below in the soft-meson limit. As an illustration, con-
sider the decay of the baryon, A(P=L+z~, P =+ I)-B(-+)+C(0 ), where L is a positive integer. With
the effective-interaction Hamiltonian

H=gq„. ..„(1or y, )ya„.. a„(p,

one can calculate the decay width using the Rarita-Schwinger wave function' of A,

I'(Z=L+-,', p =~ 1) ~g'[(A ~B)' —C']A 'I,"", (9)

where the signs + depend on the choice of I', and where A, B, and C denote the masses involved. Clear-
ly, the usual barrier effect is present in Eq. (9). In the soft-meson limit (C =C"=0), Eqs. (8) and (9)
give for the couplings g»c and g~.~ c

[~ a:zc
~f.E ac „(„-fclj "a cia s c ]

This turns out to be exactly the same as the one derived by Oneda and Matsuda' under the same as-
sumption. Thus the true origin of the appearance of l, qq

= 1 is the broken-SU(3) coupling-constant re-

1276
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lation, Eq. (10). Equation (10) gives a remarkable prediction'" (consistent with experiment'o) for the
ratio of the Y(1405) couplings, II =—g„~z/grz„) =(Y —p)/(Y —Z), with f, =fz.

We now compare our results with experiment. Consider the reactions appearing in Eq. (1). Equa-
tion (7) leads to

In the SU(3) limit, where f,=f and pI=. .. ——pI &f

we take p; = ...=p,."', Eq. (11), of course, reduces
to Eq. (1). Equation (11) is almost the same as
the one introduced phenornenologi cally by Tril-
ling, if one choses to compare the above rela-
tions at the same scattering angle and the inci-
dent particle momentum in the lab frame. We
now face the problem of how to compare the pre-
diction, Eq. (11). In the SU(3) limit, s'=s(p;=p )
and t'= t(6=8'), and SU(3) holds for each p, , 6. In
broken SU(3), mass splittings somewhat obscure
the problem. ' Trilling' and Rosenfeld' argued
that the two SU(3)-related reactions should be
compared at p, =p, '. For differential cross sec-
tions, one of the variables, 0, t, u, must also
be chosen case by case, depending on the reac-
tions. Although our limiting procedure imposes
some constraints upon our variables, they are
obtained only in the soft-meson limit and cannot
be taken too seriously until we establish the re-
liable extrapolations. Within the errors of ne-
glecting meson masses, we find that the con-

straints do not forbid" us to compare our rela-
tion (11) at the same p,. and 8 for each reaction
as in the case of exact SU(3). Then, Eq. (11) is
also valid for the total cross section, replacing
do'/dQ by v.

Figure 1 shows the comparison of our predic-
tion (with fz/f, = 1) with the experiments. The
three curves for 7(p —mb. , mp-KY*, and Kp-K=*
are the predictions with the input reaction Kp
-7t Y* given by the solid curve. " The agreement
is good and resolves the discrepancies found by
Ref. 2.

Figure 2 gives our prediction (with fz/f„= 1)
on the Reaction (1b). The curve for K p -K'
is the prediction with the input reaction K p

7r

Since our result always involves the E,ff —1

angular-momentum barrier, it will resolve most
of the similar difficulties encountered" when
naive SU(3) is applied to the reactions involving
pseudoscalar mesons.

IO

= Kp —IIX
0 0—~—KP K 8

p

I ~I ~
;- ~ ~I

I p ~ ~
I

o.ol 0.5
C.M. Mornenturn {GeV/c)

il
~ ~ \

I.O

FIG. 2. Cross sections for the reactions K P - ~ Z

and E p E ™0.The curve for K p —A~0 is the predic-
tion with the input reaction K p ~ Z
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