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gests physical reality underlying the semiclassi-
cal approach. Our success here leads us to con-
clude that all non- Faddeev analyses of coinci-
dence experiments must include attenuation ef-
fects similar to those discussed in this paper.
One also notes from Fig. 3 that the inclusion of
off-shell effects in 'He is consistent with our re-
sult for the more reasonable approximation to
or(p-'H), namely or(p-'H) = 2.5or(p -n). The off-
shell curves in Fig. 3 are the results obtained by
Pugh et al. using the computer code of Redish,
Stephenson, and Lerner" and the Reid soft-core
potential.

FIG. 3. Transmission coefficients from the attenua-
tion model and from experiment (see Ref. S) plotted
against E~, the incident proton energy, for the proton
QFS reactions on 3He and 4He. Dashed lines, coeffi-
cients derived by Pugh et al. using the off-shell nucle-
on-nucleon scattering cross section of Ref. 10. The up-
per curve for He(P, 2P) H corresponds to the assump-
tion az(P- H) =2.50@(P-), while the lower one was com-
puted using or(P- H) =3.0oz, (P~).

xor(p n), respective-ly.
A look at our results indicates the extremely

good fits of the attenuation model to the experi-
mental data. The theoretical curves follow ex-
periment closely for all three nuclei over the
large range of incident proton energies consid-
ered. This consistency, over almost 2 orders of
magnitude, is unlikely to be fortuitous and sug-
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The first-order neutrino equations are shown to be separable in the Kerr-metric back-
ground. These equations are then used to show that the neutrino field is not superradiant,
in contrast to the scalar, electromagnetic, and gravitational fields.

Recently Teukolsky' has shown that the electromagnetic and gravitational perturbations on a Kerr
background are separable. Carter' had shown that the scalar equations are separable. The only other
fieM with a consistent minimal-coupling generalization to a curved background is that described by
the neutrino equations, which we have found also to be separable in Boyer-Lindquist coordinates.
Although the separability of the neutrino equations was derived by use of the Newman-Penrose spin-
coefficient formalism, we present the results in the more traditional Dirac form.
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The Kerr metric in Boyer-Lindquist coordinates is given by

ds = ——— —Zd9 + —(dt —a sin 9d(/2) —- [—(2df+ (r +a )d(/J,
Z dh' sin O 2. 2 . 2

Z

where

x'+ a 0 a sinO
(pg)&/2 y pl/2 Y

0+Q
Y (gg)1/2 Y
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4 =r' —2M'+ a', Z =x'+a'cos 'O.

A suitable choice of y matrices obeying y "y'
+y'y" = 2gK„,"' are given by

equations for B,(r), B,(r) a,nd S, (9), $,(9):

r
a . ~ +a .ma—'L B)(r) = i/2B2(r),

~ ~+g .nba—+ ice -+i B(r—) = —7-B (r).

PB—+ (da sin9 + —. $,(9 ) = k$, (9),
dO sinO

m
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——&ua sin ——.—S (9) = —kS (9).
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where y' are the ordinary flat-space Dirac ma-
trices in the Bjorken-Drell' representation. The
neutrino equation is now written as

y "(&/&x" —I"„)(= 0,

where the I
~

are a set of spin-affine connections
uniquely determined by the equations

tr(I'„) = 0.

We examine the solutions with (I —y')(C)= 0.
ting (= (,'„"),

e '"'e "' B,(r)$, (9)
[6 sin'9(r+ ia cos9)'J' ' B,(r)S,(9) '

we find the following set of coupled first-order

B,(r) = O(~'/'),

B,(r) = exp[ —i((e+me)„) J r*+ O(a), (8)

where r * is defined by dr */dr = (r'+ a')/~ and
w„= a/2Mr„.

Defining the conserved neutrino number current
as Z~„]"=(~„]y"p](x) (5 being the Dirac adjoint (C'i' ),
we find that the number density is always posi-
tive.

Here k is the separation constant determined
by Eqs. (7b) for $,(9), S,(9) regular at 9=0, ~.
In the limit as a=0, Eqs. (7b) reduce to those
given by Schrodinger' for the spherically sym-
metric case. In the same limit Eqs. (7a) reduce
to those for the Schwarzschild metric. ' Sim-
ilarly, as 3» =0, we obtain the separated equa-
tions for neutrinos in flat space in spheroidal co-
ordinates. No separation of variables seems pos-
sible with the above choice of Dirac matrices for
the Dirac equation with mass.

The equations with (I+y')g=-0 are obtained
from those above by recalling that if p obeys the
neutrino equations with (I+y')(] =0, then )], =y'(C)*

obeys those with (I -y')$=0 (the asterisk de-
notes complex conjugation).

For waves which are ingoing at the Kerr hori-
zon (6 = 0, r„-M+ (M' —a'} 'j, we find

~ver'2= —„—,((I)(,(r)2, (4)l'rl)(, (r)s, (4)l']
' "'„,
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Also, the net number current flowing down the black hole is always positive:,

',—, = —fd8dv~ g-z"= —2fd8dq[IIt, (~)i's, '(8) —l~, (r)l's, '(8)]= 4~[lft, (r)l' -lf~, (r)l'1 (10)

[We have normalized the angular functions so that JS,'(8)d8= JS,'(8)d8=1. ] This expression can be
seen by Eqs. (Va) to be independent of x. By Eqs. (8) we have that BX/Bt =4vtR, (x„)Ia&0.

Of special interest also are the net energy and angular momentum flux carried down the black hole
by the neutrinos. In particular, Bekenstein has shown that if the ratio of energy to angular momentum
carried down the black hole by a wave is given by ~/m, and if the conditions of Hawking's area theo-
rem" are satisfied (namely, the positive-energy condition and the impossibility of naked singularities
imply that the area of a black hole must increase), then superradiant scattering must occur; i.e. , if
((u+mm„) &0, the wave must extract energy from the black hole.

For neutrinos, the stress-energy tensor is given by

x 8("l =—$(x) yp, —,—& "-y& — —F g(x)+c.c.
8n ex' ' ' Bx"

The conserved energy current is given by T,"(x)
and the conserved angular momentum current
by T~"(x). Evaluating the energy and angular mo-
mentum currents down the black hole, we find

B&/Bt = f4 gT-,"d8dy = &@BE/Bt,

BL /Bt = f~gT ~"d8dy =mBN/Bt .

I would like to thank %'illiam Press and Saul
Teukolsky for discussion and pointing out the re-
lationship between superradiance and Hawking's
theorem to me. I would also like to thank the
Miller Institute and the Department of Physics
of the University of California, Berkeley, for
support during the course of this work.

The ratio of energy to angular momentum is &u/m,

but we find no superradiant effect. For ~ &0,
there is always a net energy flux down the black
hole, independent of the value of m.

This absence of superradiance is related to
the fact»» that the energy-momentum tensor 7'&,
does not satisfy the positive-energy criterion
inside the ergosphere (i.e. , T&, t"'t' &0 for t~t"
&0). Were the neutrino field a classical field,
this result would be in immediate violation of the
assumptions of both the area theorems and also
singularity theorems of Hawking, Penrose, and
Geroch. ' The quantum-mechanical nature of
fieMs make such conclusions unclear, and this
question is being studied in detail elsewhere.

In addition, the intrinsic parity nonconserva-
tion of neutrinos (i.e. , neutrinos have only one
helicity) will lead to vacuum polarization effects
about a spinning object (naively, the gravitation-
al spin-spin interaction between neutrinos and a
spinning object leads to vacuum polarization ef-
fects). This will also be discussed in detail
elsewhere.
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