
VOLUME $1, +UMBER 20 12 NovEMBER 1975

manuscript.

A typical example is that of an antiferromagnetic in-
sulator-to-paramagnetic metal transition; see, for ex-
ample, D. B. McWhan, T. M. Rice, and J. P. Remeika,
Phys. Rev. Lett. 28, 1884 (1969).

The possibility of having an exchange interaction be-
tween the interstitial atom and remaining atomic sites
can be incorporated easily in this model and would lead
to a different magnetic state in the disordered phase.
For the sake of simplicity in this paper we will assume
that no coupling of this nature exists.

~If x is the number of interstitials available per atom,

then Q =@+1.
&;& Q

~ would imply the formation of a superlattice
of correlated interstitials, i.e., the onset of a new type
of order.

'By melting we mean a first-order transition into a
quasicrystalline disordered state which characterizes
the liquid state. See, for example, J. Frenkel, Einetic
Theory of Liquids (Dover, New York, 1955).

'B. A. Huberman and W. Streifer, to be published.
~C. Guillaud, J. Phys. Radium 12, 228 (1951); B. B.

Heikes, Phys. Rev. 99, 446 (1955).
The melting point in MnBi is of a peritectic charac-

ter and takes place at 446'C.
B. W. Roberts, Phys. Bev. 104, 607 (1956).

OT. Chen, private communication.
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We report on a molecular-dynamics study of a two-dimensional model system which is
expected to exhibit antiferrodistortive structural phase transitions, The estimated values
for the critical exponents P and g' are close to those of the two-dimensional Ising model.
The origin of a central peak in the dynamic form factor is attributed to the formation and
the dynamics of clusters,

Experimental and theoretical studies have em-
phasized the need of an anharmonic treatment of
lattice dynamics in systems undergoing a struc-
tural phase transition. ' ' The molecular-dynam-
ics technique is a powerful way of examining the
static and dynamic properties associated with
these transitions, since anharmonicity is treated
without approximation. '

In this note we report molecular-dynamics re-
sults performed on a two-dimensional model sys-
tem which is expected to exhibit antiferrodistor-
tive structural phase transitions. There exist
two extreme cases: the order-disorder and dis-
placive transitions. "

A prominent example of an antiferrodistortive
displacive transition is SrTiO, . A feature of this
tl"ansltlon ls that lt exhlblts nonclassical fluctua-
tions as demonstrated by paramagnetic resonance
studies. " A second attractive feature is the ap-
pearance of a central peak in addition to the con-
ventional soft-mode resonance in the dynamic
form factor of the density fluctuations at the 8
corner (T~ T,) and the I' point (T ~ T,) of the
Brillouin zone, respectively. '"

The unexpected appearance of the central peak

gave rise to many theoretical speculations on the
nature of this phenomenon. " " From the pres-
ently available neutron-scattering data, however,
the origin of the observed peak cannot be eluci-
dated because of resolution limitations. This
open question was one of the compelling reasons
for making a molecular-dynamics study.

A model Hamiltonian, covering the whole range
from the order-disorder limit to the displacive
lim it, reads' '

+cQ p v,'M„,"v,,' M,„,".
P„' is the momentum of the I(,'th particle in the 5th
unit cell and U, '=R, ' —Ro,' denotes the corre-
sponding displacement from the reference posi-
tion R,„'. The unit vector M„" equals (R„'
—R„' )/I R,„' —R„.' I for nearest neighbors and
is zero otherwise. The arrangement of the par-
ticles and the constraints subjected to the dis-
placements are shown in Fig. l for a two-dimen-
sional system. These constraints imply that we
consider only an antiferrodistortive transition,
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FIG. 1. Arrangement of the particles in the low- and
high-temperature phases. Open circles form the refer-
ence lattice which is equivalent to that of the high-tem-
perature phase, with atoms 1' and 2' per unit cell.
Closed circles denote the positions of the particles in
the low-temperature phase with four atoms per unit
cell. Particle 1' displaces only in the x direction, and
particle 2' in the y direction, whereas particles 1 and
8 displace in the & d.irection, and 2 and 4 in the y di-
rection.

corresponding to the motions of the oxygen atoms
of SrTio~ in the a-b plane. " The order param-
eter for such a two-dimensional system is given
by the scalar

(U) = (4N) ig, (U,„'+U»' —U „' —U '). (2)

The model parameters have been chosen as fol-
lows: for model I,

A = —1, B=3, C = —1, a=4(U)ir 0=12, (3)

particles are then allowed to move and their ca-
nonical variables are calculated according to a
set of difference equations with a time increment.
This set of difference equations approximates the
set of Newton's equations. Explicit details of
programming and the form chosen for the differ-
ence equations are given in the papers of Rah-
man" and Verlet. " For our purpose, however,
it was more convenient to keep the temperature
constant. This ean be achieved by adjusting the
instantaneous values of the velocities after any
time increment in such a way that T remains
fixed. In this procedure equilibrium is reached,
while the instantaneous value of the order param-
eter, for example, fluctuates about a mean value.
Using the equilibrium data saved one might then
calculate space-time correlation functions, re-
lated to the linear response of the system, and
time averages. The limitations of this technique
as a tool to investigate phase transitions are sim-
ilar to those of the Monte Carlo method. They
have been discussed in that context extensively. "

Our data for the order parameter [Eq. (2)] tak-
en at different temperatures indicate that in the
corresponding infinite system (model I) T, is
close to 5.35 and P= 8. In model II we found T,
= 2.13 and again p= 8. As expected, then, the di-
vergence of the staggered isothermal suscepti-
bility was found to be consistent with y=y' = 4,
the value of the two-dimensional Ising model.
The Hartree approximation" leads to p =-„y=1,
T, = 9 (model I) and T, =4.5 (model II).

An interesting observation was made by analyz-
ing the temporal development of the system. In
fact, it turned out that the system forms clusters,
representing connected cells whose instantaneous
local order parameter —,'[U„'(t) + U»'(t)] or —2

&& [U,„'(t)+U„'(t)] has a sign opposite' to that ex-
pected from (U)z-„so that

for model II,

A= ~, B=—,', C = —1, a=5.66(U)ir, =12; (4)

-'[U,.'(t) + U.,'(t)]
sgn w sgn(U} r-,.

——.'[U..'(f).U.„'(f)]
(5)

a is the lattice constant. All units are set equal
to 1 and as a consequence all quantities are di-
mensionless. According to the Hartree approx-
imation, ' ' model I undergoes an antiferrodistor-
tive order-disorder and model II an antiferrodis-
tortive displacive transition.

The dynamics of this system is assumed to
evolve according to Newton's equations associat-
ed with Hamijtonian (1). We consider a system
of 40&&40 high-temperature unit cells (Fig. 1),
subjected to periodic boundary conditions. The

Figure 2 shows snapshots of cluster configura-
tions in model II at various temperatures. It is
seen that the clusters increase by approaching
T,= 2.l3 from above or below. Similar behavior
was found in model I.

The occurrence of these clusters has a marked
effect on the dynamics of the system. In fact, a
given particle not only takes part in the conven-
tional vibrations but it is also tied to the cluster
dynamics, which becomes slower and slower by
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FIG. 2. Snapshots of instantaneous cluster configurations in model II (T~= 2.13) . Points denote cells with local

order parameter 2[U&„(t)+ U» (t)] or —2 [U&„(t)+ U4 '(t)] opposite to (Ufr —0, Eq. (5).

at various temperatures for models I (Fig. 8)
and II (Fig. 4) at k= (w/a) (8, 1). The spectral
density or the dynamic form factor is defined by

Spp(k, of ) = f '
dt e '~'

Sqp(k, t),

S„(k,t) =(p(- k, o) p(k, t)&,

p(k, t) = (I/v N)g exp[ —ik ~ R,'(t)].

R,' denotes the position vectors of the particles,
From Fig. 3 it is seen that by approaching T,
from above or below a central peak appears as
such. Below T, , the resonances of the conven-
tional soft mode appear at I = 1.4 (T = 4) and &u

= 1.2 (T = 5). At T = 5, however, the central peak
dominates the spectrum and the resonance due

(8)

approaching T, . As a consequence, by approach-
ing T, one expects an additional low-frequency
spectrum in the spectral density of the time-de-
pendent correlation functions of the density, the
order parameter, and the potential energy. This
view has been confirmed by our simulations. In

Figs. 3 and 4, we show as an example the fre-
quency dependence of the spectral density

S„(k,ol)
Spp(k, t = 0) —I(p (k)) 1' ' (8)

to the soft transverse mode is very weak. Above
T,= 5.35, the T = 6 spectrum is again dominated
by the central peak. The conventional soft-mode
resonance appears again at T =10 (+=0.9) and
the central peak is considerably weaker. It is
no longer visible at T = 20.

In model II (Fig. 4) the low-temperature spec-
trum [Fig. 4(b)] is dominated by the conventional
soft-mode resonance, marked by arrows. For
T ~ 1.5, however, we observe the appearance of
a low-frequency spectrum, which explains the
decreasing intensity of the resonance due to the
conventional soft mode. At T =2.05 the low-fre-
quency spectrum is dominated by an intense peak
at v = 0.12, appearing at T = 2.07 as a central
peak. This low-frequency spectrum must be at-
tributed -to the cluster dynamics, becoming slow-
er and slower by approaching T, . Consequently,
close enough to T, , this low-frequency spectrum
may either go over into a central peak or will ap-
pear as such as a result of resolution limitations.
Above T, , the temperature dependence of the
spectrum is qualitatively similar to that below
T, [Fig. 4(b)]. The low-frequency peak, how-
ever, is more pronounced and appea, rs at T =2.4
as a central peak. Additional spectral densities
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FIG. B. Frequency dependence of the dynamic form
factor S~(k, &u) in model I at k= (m/a){2, I). (a) T =4 and
T=5; (b) T=6, T=10, and T=20.

[Eq. (6)] have been calculated at (n'/a) (l, 1 f and
(s/a) (2, 0j, where the conventional soft mode is
not expected to appear. Here we find well-de-
fined phonon resonances, rather unaffected by
the phase transition.

To summarize, we have shown that the critical
dynamics of antiferrodistortive phase transitions
is associated with the appearance of a central
peak in the dynamic form factor Szz(k, &u). The
resonance of the conventional soft mode, how-
ever, becomes weaker by approaching T, and no
longer visible close to T, . Moreover, our re-
sults suggest that this central peak is due to the
formation of clusters and their dynamics. This
mechanism has been neglected so far in the mi-
croscopic treatments. +"""The appearance of
the central peak was found to be distinctly differ-
ent in the displacive and disorder cases. There,
the cluster dynamics were, as the appearance of
the central peak revealed, mainly relaxational.
In the displacive regime, however, the "extra"

g./ X QJ

2
FIG. 4. Frequency dependence of the dynamic form

factor S&&(k, &u) in model II (displacive model) at k = (w/

a){2,I). The arrows mark the peaks due to the conven-
tional soft mode. (a) T =1, T =1,5, T =2;05, and T
=2.07; (b) T =2.4, T =2.5, T = g, X =5, and T =10.

low-frequency response was not centered at co

= 0, except very near to T, . This prediction
could be verified by means of high-resolution
inelastic neutron-scattering measurements.

We acknowledge stimulating discussions with
K. A. Muller, P. Heller, C. P. Enz, N. Szabo,
and P. F. Meier.

~See the various contributions, in Proceedings of the
NATO Advanced Study Institute on Stxuctuxa/ Phase
Transitions and Soft Modes, Geilo, Norway, l97l, ed-
ited by E. J. Samuelsen, E. Anderson, and J. Feder
(Universitetsforlaget, Oslo, Norway, 1972).
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Absolute Cross Sections in 'H- and 3He-Induced Breakup Reactions

T. K. Lim
Department of Physics and Atmospheric Science, Bmxel University, Philadelphia, Pennsylvania l9104

(Received 6 September 1978)

The absolute magnitudes and shapes of the cross sections of a number of H- and He-
induced quasifree scattering processes are correctly predicted by the use of Eckart clus-
ter model wave functions for the light nuclei involved and a simple, but physically plausi-
ble, modification of the Rogers-Saylor attenuation model.

Quasifree scattering (QFS) in multiparticle re-
actions has been the subject of recent detailed
study, both experimentally and theoretically. ' '
In the analysis of data, "' it appears that the
plane-wave impulse approximation (PWIA) and
the cluster-model approximation applied to such
quasifree knockout reactions, A(a, ab)B, can be
quite successful in predicting the general shape
of the coincidence cross section. However, it
has been found in each QFS where the cluster
probability is well known, as in reactions involv-
ing 1s-shell nuclei, that the PWIA curve is a lit-
tle too broad, and a normalization factor is re-
quired to derive absolute fits to the data. It has
also been determined that this factor is energy
dependent. ' '

In the absence of a rigorous theory, similar to
the Faddeev theory in three-particle problems,
considerable theoretical interest has centered
on removing, or deriving from some suitable
model, this normalization factor, thus resusci-
tating PWIA as a viable instrument for QFS anal-
ysis. For example, Duck, Valkovic, and Phil-
lips' utilize a large phenomenological off-shell
correction to produce absolute magnitude and
shape fits to the coincidence cross section of
coplanar 'H(d, dP)n at 12.5 MeV. Also, Bonbright
et ah. have shown that a smooth cutoff parameter

in the Hulthen deuteron function, which varies
with energy, is able to fulfill the same purpose.

In this work, I show that such deficiencies in
PWIA analyses of recently studied H- and He-
induced QFS processes can be removed by the
use of Eckart cluster-model wave functions for
the light nuclei' and a simple, but physically plau-
sible, modification of the Rogers-Saylor attenua-
tion model. ' In the original model, the theoreti-
cal expression for the coincidence cross section
to be compared with experiment is the usual
PWIA expression multiplied by an attenuation fac-
tor. This factor is defined, for example, in (P,
2P) QFS as

T (vr) = jg*(r) exp( —vr/4mr')((r) dsr,

where g is the cluster function representing the
relative function of either final-state proton with
respect to the spectator nucleus, while 0~ is the
sum of experimental total cross sections of both
protons on the spectator at the corresponding
final-state energies. Physically, T represents
the probability of transmission of the two pro-
tons after QFS into detectors located at the QFS
kinematic region. Haracz and Lim' have shown
that in symmetric, coplanar (P, 2P) reactions on
'H, SHe, and He, Eckart wave functions and this
attenuation factor can lead to excellent shape and


