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We present the inverse scattering method which provides a means of solution of the
initial-value problem for a broad class of nonlinear evolution equations. Special cases
include the sine-Gordon equation, the sinh-Gordon equation, the Benney-Newell equa-
tion, the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, and
gener aliz ations.

One of the most exciting recent advances in ap-
plied mathematics and theoretical physics has
been a method of solution for the initial value
problem for certain nonlinear partial differential
equations which arise naturally in many scientif-
ic areas. ' ' There are four key steps in the
method of solution. (1) First, set up an appro-
priate, linear scattering (eigenvalue) problem in
the "space" variable where the solution of the
nonlinear evolution equation plays the role of the
potential. (2) Choose the "time" dependence of
the eigenfunctions in such a way that the eigen-
values remain time invariant as the potential
evolves according to the evolution equation. Al-
though it is yet to be proved, the ability to achieve
this step appears to depend on the existence of
an infinite number of independent conservation
laws for the evolution equation. (3) Solve the di-
rect scattering problem at the initial "time" and
determine the "time" dependence of the scatter-
ing data. (4) Do the inverse scattering problem
at later "times"; namely, knowing the (discrete)
eigenvalues corresponding to the bound states
and knowing the time dependence of the other
scattering data, reconstruct the potential. The
final step can be written in terms of a linear
integral equation (or a coupled set of linear in-
tegral equations) from which one can compute
the solution to the evolution equation for all time.

We have found that many nonlinear evolution
equations can be solved by the following scatter-
ing problem:

Bv, /ax+ i fv, = q(x, t)v„

Bv2/Bx —l)v2 = r(x~ t)vg.

Choose the time dependence of the eigenfunctions
v, and v, tobe

The eigenvalues & are time invariant when

BA/Bx= qC —rB,

BB/Bx+ 2ifB = 2q/Bt —2Aq,

8 C/Bx —2it C = Br/8t+ 2Ar

(3)

Equations (3) are obtained by cross differentia-
tion of the systems (1) and (2). Finite expansions
of A, B, and C in terms of the parameter 2ig al-
low us to determine the class of evolution equa-
tions which can be solved by the inverse scatter-
ing method. It can be verified that the following
evolution equations belong to this class.

Class I.—Take A = —4ig3 —2iqr&+ rBq/Bx —qar/
Bx and find

Bq/at -6rqaq/ax+ 8'q/Bx'=0,

ar/at 6rqar/—ax+ 8'r/ax'=0

When r = —1, (4) reduces to the Korteweg-de
Vries (KdV) equation, and the system of equa-
tions (1) reduces to the Schrodinger equation'

e'v, /Bx'+ [g'+ q(x, t)]v, = 0.

When r=+q, (4) reduces to the modified KdV
equation'

8 q/8 t % 6q 8 q/8 x+ 8 q/Bx = 0.

(4)

When x=+q, q real, the eigenvalue problem
posed by (1) is self-adjoint, and hence all eigen-
values are real. In this case no solitons arise,
and the final state can be shown to decay alge-
braically in time. ' When x= —q a class of paired
permanent waves (with complex eigenvalues)
arise in addition to the individual solitons.

Class II. 1'ake A=a/g, a—nd find

aa/Bx=-,'ia(qr)/at, 8'q/axat= 4iaq, —

8'r/8 xa t = —4iar.

Bv, /at =A(x, t, g)v, + B(x, t, g)v„

Bv,/at= C(x, t, g)v, —A(x, t, r)v, .
(2)

8 u/8 xa t = sinu (6)

When a=-, icosu, r= —q=-, au/Bx, the sine-Gor-
don equation
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is obtained. Equations (6) and (8) are solved by
the same scattering problem. ' In addition to the
traveling kink and antikink solutions, the only
other localized stable solutions are soliton states
(breathers) which oscillate in time and which
correspond to paired complex eigenvalues. The
eigenvalues corresponding to the modes of a
given breather in its own rest frame all lie on
the circle [g*=-,'. In its rest frame, a particu-
lar breather solution is

u(x, t) = 4tan 'f[(1 —uP)/u']'icos~(7' —T )

x sech[1 —uP)'~(X Xo)]f, — (6)

B u/BxBt = slnbu

is obtained. Since the eigenvalue equation is
self-adjoint, no solitons arise and the final state
will decay in time.

Class III.—Take A = —2zf' —zxq and fxnd

iBq/Bt+B'q/Bx' —2q'r =0,

iBr/Bt —B'r/Bx'+ 2qr'= 0.

In the special case r = —q* (+ q*), this corre-
sponds to the equation describing the evolution
of the-envelope of an almost monochromatic
wave"" when the Benjamin-Feir instability""
is operative (inoperative). The case r = —q* has
been solved by Zakharov and Shabat. ' %hen r
= q*, the eigenvalue problem (1) is again self-
adjoint and thus no solitons arise. The solution
decays algebraically in time and has a self-simi-
lar structure. '

These equations (4), (7), and (11) are special
cases of the general class of evolution equations
which can be derived and solved by our proce-
dure. The generalized Korteweg-de Vries equa-
tion" can also be obtained by this procedure
when r =1.

The direct and inverse scattering analysis will
be published elsewhere. Here we merely quote
the result.

Given q(x, 0), r(x„0) sufficiently smooth and de-
caying sufficiently fast as jx l- ~, the solutions

where &e= —2Reg and x=-,'(X+T), t= ,'(X T-). —
These solutions have been obtained by Lamb' and
Seeger, Donth, and Kochendorfer' from the Back-
lund transformation and have been observed nu-
merically. "'

If a= ,'i cosbu, r—=q=-,'Bu/Bx, the sinh-Gordon
equation

q(x, t), r(x, t) for all time are given by

q(x, t) = —2K, {x,x),

r(x, t) = —2K, (x, x),

OO

K(x, y) —
0

I"(x+y) —J K(x, s)I'(s+y)ds =0,

(13)0 Qo

K(x, y)+ E(x+y)+J K(x, s)F(s+y)ds= 0,

I"(x) = — — -'-—e' "d(- inc, exp(ig, x),
-

b(~, t);,.
2n a(t)

(14)
e ""d]+ i+C»exp( —ig~),

K, (x, y) ~K, (x, y)$
K,(x, y)

' (K,(x, y)

The g» (f») are the eigenvalues of (1) which lie
in the upper (lower) half plane; tbe a, b, C„a, b, C„
are the scattering data and have the time depen-
dences

a(r) = a.(t), a(C) = a.(C),

b((, t) = bo($ ) exp[ —2Ao($)t],

5((, t) = b, ($) exp[2A, ($)t],

C»= C»o exp[ —2Ao(g»)t]

C, = C~ exp[2Ao(g»)t], and Ao(&) = lim A(x, &;&).

The eigenvalues and the various constants are
determined by solving the eigenvalue problem (1)
at the initial time. Following Zakharov and Sha-
bat, ' an infinite set of conservation laws can be
found for the above systems and correspond in
the case of Eq. (6) (also for KdV) to the polynom-
ial conserved densities of integer rank. '

%e note also that a large class of linear prob-
lems can be solved by this method. For such
cases take x=—0, and the procedure reduces to
the Fourier -transform approach. The conserva-
tion laws for these cases are trivial.

The solution of the system of linear integral
equations can readily be found in closed form
when tbe reflection coefficients bo(&) and bo($)
are identically zero. This requires a very spec-
ial class of initial conditions. For arbitrary ini-
tial conditions, (13) can be solved asymptotically
(large t) following Ref. 6. The general asymptot-
ic solution is essentially a sequence of kinks
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(solitons) and breathers (paired solitons with
periodic behavior) superposed on a decaying back-
ground of oscillatory structure. The latter cor-
responds to the continuous spectrum.
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We have found the energy spectrum of cosmic rays with Z- 60 to be much steeper in
the neighborhood of 1 GeV/amu than measured spectra of less massive cosmic rays. The
data analysis includes effects due to solar modulation. This low-energy enhancement of
high-Z primaries implies sources which either are strongly enriched in very heavy ele-
ments or have a S-dependent acceleration mechanism.

In September of 1970, we carried out a balloon
flight of a 22-m' passive detector array in order
to study trans-iron cosmic rays. Included in the
array were one layer of 200- p.rn G-5 nuclear
emulsion, one layer of fast-film Cherenkov de-
tectors, and forty sheets of Lexan plastic track
detectors. The effective exposure for extremely
heavy primaries was - 60 h at a mean atmospheric
depth of -3.7 g/cm'. A detailed description of
the flight and data analysis has been presented
elsewhere. '

One of the principal goals of the experiment
was to determine for the first time an energy

spectrum for cosmic rays with Z» 60, The real-
ization of this goal revealed a spectrum much
steeper than those of lighter nucleonic cosmic
rays. %e consider this feature to be very signif-
icant in terms of implications for cosmic-ray
sources. All of our 35 events with Z~ 60 were
found by scanning 17.8 m2 of the emulsion with
stereomicroscopes. The nature of the spectrum
dictated that we eliminate insofar as possible any
uncertainties associated with scanning efficiency.
To this end, the entire area was completely re-
scanned by different observers with the result
that no new events were found. In addition, an


