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The nonoscillatory parametric instability is observed when the "pump" frequency is
near the lower-hybrid frequency. Strong heating of both the ions and electrons has also
been measured.

Although predicted by theory, ' to our knowledge
the nonoscillatory parametric instability (the os-
cillating two-stream instability or the purely
growing mode) has not yet been verified experi-
mentally. Some of the reasons for the difficul-
ty of observing such modes are the following:
(a) The oscillatory decay instability has a lower
threshold in most cases of interest than the non-
oscillatory instability; thus it tends to "cover
up" the possible presence of the latter. ' (b) Spec-

tral analysis and wavelength measurements are
very difficult since the real part of the frequency
for the purely growing mode is zero. Recently
it has been shown, however, that for pump fre-
quencies very near the lower-hybrid frequency
the threshold for the oscillatory parametric de-
cay instability increases rapidly. ' The reason
for such increase in the threshold is that the
wave-vector matching condition produces con-
siderable electron Landau damping of the ion
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lines. Energy distributions for the electrons and
ions were measured by means of two multigrid
energy analyzers. In what follows, experimental
results obtained mostly from a hydrogen plasma
will be presented. Similar results have also been
obtained from other gases mentioned above.

By coupling to the plasma an rf signal just above
the lower. -hybrid frequency f, = 30 MHz, typical
parametric decay spectra such as shown in Fig.
2(a), top, were observed above a certain thresh-
old of the pump field. Here we notice the pres-
ence of a band of low-frequency signals (believed
to be the Doppler-shifted purely growing modes),
and the Doppler-shifted sidebands around the
pump frequency. Notice that most of the signal
is below the ion-cyclotron frequency (687 kHz).
This continuum spread of sideband and low-fre-

quency signals comes about because of the lower-
hybrid dispersion relationship [i.e., u& ~At~/k,
Eq. (1)]. The width of the spread is determined
by the amount of Landau damping on the waves. "
The enhancement of the signal at f = 17 kEEz and
the corresponding sideband signals are believed
to be due to finite-plasma effects. This fact is
borne out from wavelength mea. surements de-
scribed below. To ascertain the presence of
Doppler shift, we have varied the dc electric
field strength between the driving plates and ob-
served a corresponding linear frequency shift
(the other plasma para, meters were kept con-
stant). A plot of the measured decay frequencies
(using the f = 17 kHz mode and its wavelength)
versus the measured dc electric field strengths
in the plasma is shown in Fig. 2(b). The solid
line gives the Eq, &B„Doppler-shifted frequency,
where the measured wavelength and electric field
strengths were used. Notice that as Eq, approach-
es zero, the real part of the frequency vanishes,
thus verifying the presence of the purely growing
mode. By reversing the direction of the drift,
we obtained the same results. The wavelengths
were measured with the movable probes and a
radio interferometer (with narrow-band-pass
filters). " The wavelengths for the Doppler-
shifted zero-frequency mode (f = 17 kHz) and
the corresponding sidebands are approximately
5 cm, which is comparable to the uniform cross
section of the plasma. Typical examples of in-
terferometer outputs (from an x-y recorder) are
shown in Fig. 3 (for f =34 kHz and corresponding
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FIG. 2. (a) Top: spectra just above threshold for in-
stability. Doppler- shifted purely growing modes (left-
hand side) and Doppler-shifted lower-hybrid sideband
modes (right-hand side). Bottom: spectra for rf power
100 times that above threshold. (b) A plot of the mea-
sured Doppler-shifted zero frequency versus the mea-
sured dc field. The solid line gives the K~~ & Bp Dop
pier-shifted frequency for a measured wavelength of 5
cm and a magnetic field of 450 G.
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FIG. B. Typical interferometer traces of a Doppler-
shifted lower sideband (curve a), upper sideband (curve
&), and frequency mode (curve &).
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sidebands). The distortion of the sinusoidal in-
terference patterns is believed to be due to the
spread of wave numbers about the most unstable
one for a given frequency. ' The direction of k

for the perpendicular waves was found to be or-
thogonal to the rf pump field and the dc magnetic
field, in agreement with an E„,& B, driving mech-
anisxn. From the density-profile measurements
and a mapping of the wave amplitudes using the
spectrum analyzer, we found that the amplitudes
were maximum near the center of the plasma
column. Wavelengths along the magnetic field
were also measured. For f =17 kHz they were
found to be 200 cm (comparable to the machine
length). Using the measured plasma parameters
we have identified the sidebands as Doppler-shift-
ed lower-hybrid waves which satisfied Eq. (1).
From the frequency and wavelength measure-
ments we conclude that the corresponding fre-
quency and wave-number selection rules are
satisfied. The threshold electric fields were
measured with calibrated rf probes, and were
determined from semilog plots of the excited
modes versus the pump power. " For the modes
measured above we found E„&,= 3 V/cm (with an
uncertainty of a factor of 2), in agreement with
the theoretical value (for the case of infinite
plasma) of E,h,„-—4.5 V/cm. 4 This threshold
field corresponds to F., f XBO drift velocity of
approximately half the ion acoustic speed.

As the pump-field strength was increased to
20 V/cm, we observed broadening of the spec-
trum [see bottom spectra in Fig. 2(a); higher-
frequency components also appeared (~ & ~„.)j
and at the same time plasma heating took place.
A factor-of-4 increase in the electron tempera-
ture was measured both by a Langmuir probe
and a multigrid energy analyzer. An extra thin
(3 mm thick) multigrid energy ana, lyzer (with
the grid surface aligned along the magnetic field
lines) was used to measure energetic ions. We
measured Maxwellian distribution of energetic
ions from a few volts to nearly a hundred volts.
A typical heating time of 5-10 p,sec was also
measured. The excitation of the higher-frequency
components u & u„and the plasma heating are

presently under detailed study.
In conclusion, we have observed nonoscillatory

parametric instability near the lower-hybrid
resonant frequency. Measurements of the thresh-
old fields and wavelengths associated with this
instability have been made and compared with
theory. This instability may play an important
role in rf heating of fusion plasmas near the low-
er-hybrid frequency. '
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