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The zero-field, two-point correlation function of an +-vector systexn in d =4 —c dimen. —

sions is calculated to order e for T--T'~. The scaling function is obtained as a closed,
cutoff-independent integral. As t = (T —&~)/T~ —0 at fixed wave vector q, the leading vari-
ation is &P '"(q)t +E&"'"(q)t, where u is the specific-heat exponent; thence the maxi-
mum in the scattering above T~ is located, in good agreement with high-& series-expan-
sion estimates.

As a critical point is approached in zero field (i.e. , along a. line of symmetry) the correlation length
diverges'2 as $(T) =f,at ' where t = (T —T,)/T„and a is the lattice spacing. The exponent v depends
on d, the dimensionality of the lattice, and on n, the number of "spin" components. Similarly, the
scattering intensity, which is proportional to the Fourier transform, G(q, T), of the two-point correla-
tion function becomes large at low wave numbers q.

According to the scaling hypothesis' ' for the critical correlations, one can write

G(q, T}=Ct &D(q'g'}, (I)

for )&& 1 and qg «1. On adopting the normalizations D = —dD/dy = 1 at y = 0, the constant C becomes
the amplitude of the (reduced) initial susceptibility or zero-angle scattering function )(,(T) =G(0, T),
which diverges with exponent @=y(n, d). Similarly, $-=], must then be identified as the second-mo-
ment correlation length. '' The amplitudes C and f, must depend on the details of the interactions, the
lattice structure, etc. , but the form of the sca.ling function D(x') is expected to be "universal, " depend-
ing only on yg and d."

In this note we present, for the first time, an analytic calculation of the scaling function D(x } exa, ct
to order e', where d = 4 —e,"for a system of general n with isotropic (s s'} interactions of finite
range. Our result may be written

I/D(~~) =1+x' —4p„x'Q(x')e'+O(c'),

where p„= & (n+2)/(n+8)' and Q(x ) is defined by the fully convergent integral

Q(y} = y
' f, dz [z(1+ —,'z}j'"ln [(1+—,'z}'"+—,'z'"]

&&/(1+x} ' —y(1+@} ' ——,y 'x '[1+y+s —(1+ 2y+ 2x+y' —2yz+z2}'"]3.

(2)

The cutoff independence of this integral (see below) confirms the expected universality of D(x'). In the
limits e-0 and n-~ the result reduces to the Ornstein-Zernike (OZ) form, D=(1+x2} ', as may be
expected. (A separate exact calculation to order' 1/n has been undertaken. "}To leading order in e

the deviation from the OZ form is proportional to the exponent" r) = q(n, d), which determines the
critical-point decay of correlation. "

In the low-momentum limit (q -0 at fixed T & T,}, expansion of (3) in powers of y leads to the small-
x expansion 1/D(x'} = 1+x' —Z,x'+ Z,x' —... , the form of which has been anticipated on general grounds. "'
Numerical evaluation of the definite integrals derived from (3) yields Z»=2b»p„e'+O(s ), with b,
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= 0.007 520 and b, = 0.0001919. The surprisingly small values of the coefficients b» explain the ex-
perimentally observed fact'z'2 that the OZ form for D is a rather good approximation for small x (i.e.,
low q at fixed t) when d= 3. As evident from Table I, these results also confirm closely the compara-
tively imprecise estimates of Z4 which can be derived from high-temperature series. ~""

The finite-momentum behavior, i.e., T- T, at fixed q &0 (but qa«1), following from (5) is of con-
siderable interest. In contrast to the scaling functions previously calculated for the equation of
state, "'"the correlation scaling function itself is expected to display intrinsic, critical, (n, d}-depen-
dent singularities for large x. This follows from the conclusion" that the scattering in the finite mo-
mentum limit should vary as

G(q, T) =D, /(aq}2 "+E,(q}t' "+E,(q}t+ ... ,

(5)D( 2) D ~/ 2-71 D «/ 2 'g+(r G)/El D «/ 2 'g+ r/P

(„d) (f 2- ~/g)D = & &/(1+-,'-z)q, 2), in which y, is the universal parameter enter-
Fzshez-Buzfozd appzoximant foz D(x').' Fz'om (5) one obtains the seali"g pred « o Ez"' (q)

q
2-+rl -(r ~-)/" and a.n analogous prediction for E,"'(q). ' Th«on3ee«re ( ) may at last

analytically by studying the behavior of Q(y) for large y. A somewhat tricky calculation" leads to

q(y) =q, ' lny/y —q, /y+Q, "(hzy)'/y'+Qr' iny/y' —Qr/y'+ ~ ~ ~

Q J
Q

—2
Q

—0 Q 0 51 7 7' and () & q, & ().()13. A careful comparison with the s e~an-
sion of (5) to second order, using the known exponent expansions, "then reveals that the values of Qo
and q " are precisely consistent with the anticipated»nguia»ty st»e«re
braic cancellations occur!2r) Furthermore we obtain

where n =- u(n, d} is the sPecific-heat exponent. This form has played a valuable role in the i t
tion of critical-resistivity experiments. " It is consistent with the series-expansion data'" "although
the coefficients E, and P2 cannot be determined with any precision. By comparison with (1), one con-jectures" that

Do =1 —4qop„C +O(6 ), Dr = + 2 E+O(E ),
2r + 2 (n + 2) (7~ + 20)

n+8

(n + 2)(7n+ 20)
D, -- —

( 8)(4 ), e+O(~ ).
(7)

Table I compares the truncated expansion for Do with series expansion estimates for d = 3. The ap-
parent precision is about 5%%uo, but it must be borne in mind that the uncertainties attached to the series
estimates may not fully reflect the exponent uncertainties. It is remarkable that although the deviation

TABLE I. Comparison of numerica1 estimates for three dimensions.

Parameter

(p C

rmax Tmax/(f ~~q)
(/v

n Order 6

0.019
0.021

2.8 x10
3.1 x10 4

0.962
0.957

1.3 x10
1.8xj0

High-& seriea

0.066 +0.008
0.043 +0.014

6 3x10 4

-2.6 x]0 4

0.90 +0.01
0.91 + 0.02

(1.0 —2.3) &10
(1 4) x10-2 c

Ref. 8.
Ref. 4.
Ref. 16.
Using the Fisher-Burford approximant {Refs. 4 and 16), one has X4

=2&+~; direct series estimates for &4 are less precise (Ref. 21).
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of D(x') from the OZ form is only of order e', the coefficients D," and D," have contributions of both
first order and zeroth order. [As e-0 or n-~, one has r)-0 and 1 —o. -2v so that the two correction
terms in (5) combine to give the OZ result —1/x'. ] The divergence of the coefficients D," and D," at
g=4 is associated with the vanishing of a near ~;=4 as e-0, which, in turn, corresponds to a logarith-
mic singularity in the specific heat. A closer investigation confirms this interpretation and yields the
logarithmic amplitude.

By putting t/(f, aq)'i" = T, the finite-momentum results can be cast, to order c', in the transpa, rent
form

G(cp, T)/G, (p) =1+() —1)~(v. "-I)/Q. —T+ ... , (8)

where the limit 0 -0 correctly yields a logarithmic factor. From this expression, by neglecting the
higher-order powers of T, one may locate a maximum in the scattering above T, at 7 „=[(1 —o,)(y —1)/
(y —I+a)]"~. This maximum was first predicted numerically by series expansions, " but its precise
location was not at all accurately revealed. The good agreement between this estimate of T, and
those derived from series (see Table I) is very gratifying and considerably strengthens the interpre-
tation of the maxima seen experimentally in the same vicinity. ' '3 For n &0, the existence of a maxi-
mum can already be predicted from (4), but its continued presence for n &0 (for all finite n) could not
previously be understood theoretically.

The derivation" of the result (2) uses the graphical s-expansion technique' "for the standard, con-
tinuous spin, US, ' Hamiltonian' with a sha. rp cutoff at iqi = ~A (a being set equal to unity). The correla-
tion function is expanded in powers of u with propagator G,(q, y) = (v +q') ', where ~ is chosen to be the
inverse susceptibility 1/)(o= i /C. Using Wilson's fixed-point value' for ggo, (e), the result is

G =G, [I+4p„e'q'G, K+O(e')], (9)

where

K(q, r) = + m 'q f d'q' 1 d q" G (q",r )G,(q'+ q", ~)[G,(q' —q, r) —G, (q', ~)] . (10)

For small z one finds K(0, ~) = + In(x/A') —& +O(rid), where the constant p = 0.090 857 depends on the
form of the cutoff. It may be used in deriving the s expansion of the nonuniversal amplitude C and f,
Note that this is a first step towards the ultimate calculation of the magnitude of the corrections to
scaling for specific model systems, (A sharp cutoff is appropriate in this context. ) Next one sets"
q=~/), =cr"(' "'x, where c =C"(' "'/f„and, by comparison with (1), calculates D(x') from the r-0
limit of xG(%c~"(' "', r) Making. e expansions of D and c, comparing coefficients with those arising
from (9), and using the adopted normalization then leads to

Q(x') = x 'lim[K(xv ~,~) —K(0, ~)].

This may finally be transformed into the form (3). In the process the result is shown to be cutoff in-
dependent.
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The nonoscillatory parametric instability is observed when the "pump" frequency is
near the lower-hybrid frequency. Strong heating of both the ions and electrons has also
been measured.

Although predicted by theory, ' to our knowledge
the nonoscillatory parametric instability (the os-
cillating two-stream instability or the purely
growing mode) has not yet been verified experi-
mentally. Some of the reasons for the difficul-
ty of observing such modes are the following:
(a) The oscillatory decay instability has a lower
threshold in most cases of interest than the non-
oscillatory instability; thus it tends to "cover
up" the possible presence of the latter. ' (b) Spec-

tral analysis and wavelength measurements are
very difficult since the real part of the frequency
for the purely growing mode is zero. Recently
it has been shown, however, that for pump fre-
quencies very near the lower-hybrid frequency
the threshold for the oscillatory parametric de-
cay instability increases rapidly. ' The reason
for such increase in the threshold is that the
wave-vector matching condition produces con-
siderable electron Landau damping of the ion


