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Analytic results are derived for the surface properties of jellium. The surface poten. —

tial relative to its bulk value is determined exactly in terms of the bulk properties of the
uniform electron gas. This result is independent of any assumption concerning the elec-
tron energy density functional in an inhomogeneous system and depends only on the ener-
gy density in the homogeneous solid. We discuss the basic inapplicability of dispersion-
type calculations of the surface energy.

While progress has recently been made in un-
derstanding the surface properties of solids, no
exact results have been obtained in this area.
Elaborate numerical calculations of the electron-
ic ground state in the fixed background potential
of the ions have been presented. "

In this Letter we present the first exact result
relevant to the surface properties of the jellium
model. We calculate the surface potential of the
jellium relative to its bulk value exactly. No use
is made of an approximate form for the energy
density functional of the inhomogeneous electron
system. Our results depend only on the bulk
properties of the jellium, and we obtain explicit
results for an arbitrary form of the bulk energy
density.

We now consider the jellium model, with the
jellium background split into two parts separated
by a distance 2D, as in Fig. 1. The force acting
on an infinitesimal slab of background charge is
simply qE, where q is the total charge of the
slab and E is the expectation value of the electric
field at the slab position. ' This is the well-known
result of the Feynman-Hellman theorem. 4 Since
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FIG. 1. Schematic representation of two parts of a
solid separated by a gap 2D. Lower curve represents
electron electrostatic potential energy.

the electric field is generally nonzero, the jellium
cannot conceivably be in equilibrium. If in fact
we had considered a fixed discrete ionic back-
ground, the ion positions would be determined by
just this condition, namely that they be at poten-
tial energy minima.

The force that one half of the split jellium ex-
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erts on the other is simply obtained by summing
the force acting on each slab of charge. This
leads directly to the following expression for the
attractive force per unit area:

F/A = —p[V(L, D) —V(D, D)] —= —pb, V(D),

p, {x)

p+' {x)

where p is the jellium density and V(x, D) is the
electron electrostatic potential energy at point
x when the separation is 2D. We note that V(L, D)
is independent of D for a macroscopic sample,
and that the variation of the force with distance
is given by the variation of V(D, D), the potential
energy at the inner surface. The latter obviously
tends to V(L, D) as D tends to infinity. We note
that this force is repulsive for the barrier shape
shown in Fig. 1. This is quite simple to under-
stand physically: Since this barrier shape cor-
responds to an electric field which contains the
electrons, it acts to expel the positive charge
near the surfaces.

We ean in fact calculate this force exactly at
zero distance, and it is simply given by minus
the pressure:

F,lA = eE/», (2)

where E and Q are the total energy and volume,
respectively, and the subscript 0 denotes D =0.
This pressure can be calculated from a knowl-
edge of the bulk properties of the jellium, which
then provides a relation between the surface and
bulk properties via Eq. (1). This is our princi-
pal result:

g V(0) —= V(L, 0) —V(0, 0) = —— = p —,1 BE Bf

p BQ Bp

where f is the energy per electron for the uni-
form electron gas. Obviously for a real solid
this pressure would be zero by definition, while
for jellium it is not. This is the basic reason
for obtaining negative surface energies in the
jellium model, since at high electron density
the kinetic energy is dominant and decreases
with increasing volume. This corresponds to
a repulsive force, Eq. (2). We wish to empha-
size that Eq. (3) is exact and that no assumption
has been made concerning the form of f(p).

To derive Eq. (2) we formally consider an in-
finitesimal expansion of the jellium background,
which is performed by stretching the jellium as
shown in Fig. 2. The corresponding energy change

gp+(x)

FIG. 2. Schematic representation of positive jellium
background stretched from initial state (upper figure)
to final state (center figure). Bottom figure shows
charge difference between the two.

is, by the Feynman-Hellman theorem,

BF- 1 BA'

BQ 2A BL

= —p[V(L, 0) —V(0, 0)]

= Fo/A,

where in the last line we have replaced the aver-
age potential by its bulk value, which is exact
for a macroscopic sample, i.e. , I.-~.

It is interesting to compare our exact result
for AV(0) with the work of Lang and Kohn, ' who
have carried out a detailed numerical analysis
of jellium in the Kohn-Hohenberg-Sham' formal-
ism. The principal approximation used by Lang
and Kohn is the assumed form of the exchange-
correlation energy functional, which is taken to
be that of the uniform electron gas evaluated at
the local electron density. Within this approxi-
mation the electron density is calculated self-
consistently, with due regard to the details of
the Friedel oscillations in the electron density.

To make this comparison we use the same bulk
energy density function as that used by Lang and
Kohn. This provides a meaningful test of their
local exchange and correlation function, since
our result is completely independent of this as-
sumption. inserting the same bulk f(p) as used
by Lang and Kohn in Eq. (3), we obtain

b.V(0) = 0.4 —0.0829r, —0.0796r,'
r, +7.8 2 '

where EV(0) is measured in units of the free-
eleetron Fermi energy and —,rr, 'pn, ' = 1 defines
r, in the usual way in units of a„ the Bohr ra-
dius. As r, tends to zero this yields the usual
Thomas-Fermi result, ' while for finite r, we
compare our results with the numerical calcula-
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TABLE I. COQ)Lpar1son of exact electron E'lpctrostatlc
potential energies with numerical calculation. First
two columns give values obtained in Ref. 1, while the
third. column represents their difference, Fourth col-
umn gives values calculated from Eq. (5). Last column
gives refined values of Ref. 7.

V(L,),
Ref, 1

V(0},
Hef. 1

8V(0),
Exact
Eq. (5)

&V(0),
Ref. 7

—0.0082
0.8472
0.7145
1.108
1.492

—0.2824
0.2126
0.6872
1.186
1.704

0.2292
0.1M6
0.0278

—0.088
—0.212

0.2276
0.1829
0.0318

—0.0752
—0.1877

0.2275
0.1882
0.0322

—0.068
—0.197

tions of Lang and Kohn in Table I. The first two
columns are the electrostatic potential energies
reported by these authors, while the third rep-
resents the corresponding AV(0). The fourth
column gives the values derived from Eq. (5).
The agreement is remarkable. The last column
presents slightly refined values of AV(0) obtained
in more recent calculations by Lang. ' These
yield even closer agreement. Thus despite the
local energy density functional used by Lang and
Kohn, excellent agreement is obtained between
our exact results and their numerical calcula-
tions. This is a more sensitive test than is the
surface energy itself, since Smith's results' for
the latter are in rough agreement with those of
Lang and Kohn, even though his assumed form
for the electron density profile is quite different
from that obtained by Lang and Kohn. This is
particularly true at large v„where the Friedel
oscillations become quite large.

We can go one step further with the jellium by
calculating V(D, D) for small but finite distances
B. In this case we treat the small separation
between the two portions as a perturbation on the
intact jellium. This consists of adding a negative
slab of charge of width 2D at the center of the
whole jellium, and a compensating positive slab
at its far end. The induced charge density in the
bulk is readily calculated, from which we obtain
the change in the potential energy at x =D,

V(D, D) —V(0, 0)

= 2e'p f „dq sin2qD/q'c(q),

where e(q) is the dielectric constant of the uni-
form electron gas. This is exact as D tends to
zero so that we obtain the exact variation of the

force at small distance:

A dD ~-" q'e(q)'

As we pointed out following Etl. (l), the force
between the two segments of the jellium is indeed
repulsive for the barrier shape shown in Fig. 1,
which is qualitatively the case at high densities.
This makes plausible the negative surface ener-
gies calculated in Ref. 1 for small z, . It was
only after explicitly including the discrete nature
of the ionic background that positive surface en-
ergies were obtained.

Other approaches to calculating surface ener-
gies have been presented which are modifications
or derivatives of the Lifshitz theory of dispersion
forces. These lead to positive surface energies
in an apparently simple fashion.

There is however a fundamental objection to
the dispersion-type theories as is apparent in the
Lifshitz' expr ession for the attractive force per
unit area between two macroscopic bodies (Fig.

5
X i8~'(2D)'

x'
[(a+1)j(e —l)]'e"- 1'

where 2D is the separation between the two mac-
roscopic parts of the body under consideration,
and e(y) is its dielectric constant along imaginary
frequency axis ~ =iy. We note that spatial dis-
persion is neglected in this expression, Rs are
retardation effects. The effects of spatial dis-
persion are expected to be important at small
separations„and it is only at '.arge separations
that one can hope to use the local dielectric theo-
ry of Lifshitz. This apparent in Eq, (8) where
the force is seen to be always attractive, and

divergent at small separations. If in fact the
separated segments in Fig. I are considered to
be extremely rarefied, the Lifshitz result is
identical to summing the usual pairwise Van der
Waals interaction over the two ha1.f-spaces.
This expression obviously neglects any short-
range forces.

The energy difference between the inf'~itely
separated bodies and that at zero distance is
readily obtained by integrating Eg. (8) over D.
This yields twice the surface energy, since two
new surfaces are created by this procedure.
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This obviously yields a divergent result because
of the inadequacy of this theory at short distance.

The energy difference between the infinitely
separated bodies and that at finite separation,
as obtained from Eq. (8), can be cast into the
form of the energy difference between the zero-
point energies of the collective modes in the two
configurations. '0 This method has been used by
Schmidt and Lueas" to obtain surface energies.
These authors obviously encounter the divergence
problem discussed above, and they introduce a
cutoff procedure to obtain a finite surface energy.
This is unsatisfactory since the final result de-
pends crit~cally on the cutoff used. ' We w~sh

to stress that need for a cutoff procedure empha-
sizes the importance of short-range forces, for
which the dispersion-type theory is basically in-
applicable.

It is of course possible to express the surface
energy in terms of generalized response func-
tions and thus to obtain formal expressions for
the surface energy. This has indeed been done

by Peuckert' and by Craig. " Here of course
one is forced to introduce approximations in or-
der to calculate explicitly the response function
for a nontranslationally invariant medium. This
at least formally eliminates the need to introduce
arbitrary cutoff procedures, but still requires
a correct description of the short-range forces.
In addition, one also requires a knowledge of the
electron density profile, which appears explicitly
in the formalisms of Refs. 14 and 15. Needless
to say, the electron density profile is extremely
difficult to calculate.

In summary, then, we have presented the first
analytic results concerning the surface potential
of the jellium model for an arbitrary energy den-
sity function. Our theory is exact and establishes
a relation between the surface potential and the

bulk energy density. The excellent agreement of
our theory when applied to the model of Kohn and
Lang shows that their local exchange-correlation
approximation leads to surprisingly good results
in this case. We hope that this Letter will stim-
ulate further analytical work in this area, par-
ticularly in obtaining an exact expression for
the remaining portion of the potential between
the surface and the vacuum level.
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