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Temporally Growing Raman Backscattering Instabilities in an Inhomogeneous Plasma
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We derive the equations describing the decay of an intense, coherent electromagnetic
wave into a backscattered electromagnetic wave and a plasma wave in an inhomogeneous
plasma. The plasma wave and scattered electromagnetic wave are trapped in the vicin-
ity of their cutoffs near w,=wy/2. The resulting temporally growing instabilities may
explain the strong heating and the blowoff observed in recent computer simulations of

Raman scattering.

We will investigate the Raman backscattering
of a coherent electromagnetic (EM) wave in an
inhomogeneous plasma in the cutoff region of the
backscattered EM wave. This cutoff occurs when
wo® 2w,,, where w, is the frequency of the inci-
dent pump wave. The WKB approximation of
other authors breaks doen in this region.! Fors-
land, Kindel, and Lindman have recently carried
out inhomogeneous plasma computer simulations
of Raman backscattering and have found that
strong electron heating and scattering occur in
the plasma in the vicinity of the cutoff of the scat-
tered EM wave.? More recently these authors
have found that a temporally growing instability
can exist in the same region.?

We assume that a plane-polarized EM pump
wave, E=2Re[E () exp(-iw,t)], propagates in-
to a plasma along its density gradient and is in-
cident on an EM perturbation, E , , propagating
in the backscatter direction. The oscillation ve-
locity of the electrons in the electric field of one
wave couples with the magnetic field of the other
wave to produce a spatially dependent Lorentz
force along 2 (the direction of the density gra-
dient), This Lorentz force, which oscillates in
time at a frequency w=wy,+w., produces elec-
tron bunching enhanced by the response of the
electrons to their self-consistent field, E,. E,

2

satisfies the following equation:
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where 7=(y+v,)/2 and v and u, are the temporal
growth and collisional damping rates of E ,, re-
spectively (w is real). We have approximated
the plasma frequency as w,?(z)=w?(1 +2z/L),
where L is the density scale length. The imagi~
nary terms are treated as constants since we
will be primarily interested in the localized re-
gion where w~w,(z). In the vicinity of its cutoff
E_ varies very slowly in space. The most rapid
spatial variation in the plasma at this point is
generated by the pump which varies approximate-
ly as exp(ikyz), where ko~ (w2 — w?)2/c is the
local wave number of the pump. If the dispersion
of E , (of order «*/c?) is much smaller than y/w,
it can be neglected and E , becomes

E, == (e/mw_wye  'd(E, E, )/ dz, (2)
where € ,(z) =1 - w,%(2)/w® +iy/w. The neglect of
the dispersion of this solution is valid if* [(w/
ykoL +1)® = 1]koLa®/c* « 1. The density perturba-
tion generated by the beating of £, and E, ,
which can be found by inserting E, into Poisson’s
equation, will couple with the electric field of
the pump to produce a current perturbation, AJ,_
= (71_w0/477)dEw/dz, where v, = eE,UO/m w, = elec-
tron oscillation velocity in E, . Adding AJ,,_ to
the usual wave equation for E _, we find
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On expansion of the dielectric functions for a linear profile, Eq. (3) becomes
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where A =w_?/w? -1 represents the mismatch be-
tween the cutoffs of E , and E,_ in the absence of
the pump. We have assumed that &, '|d InE ,_/
dzl«< 1. The last term in Eq. (4) arises from

electron bunching produced by the density gra-
dient and significantly modifies the spatial am-
plification of E,_ if w/y%,L 21. I w/yk,L «<1,
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E,_ is spatially amplified in the region z%/L?
<30.2/c? =7%/w? <«<1. We will investigate the tem-
porally growing solutions to Eq. (4) which can
exist if E,_ is trapped by the plasma. After a
change of variables, Eq. (4) becomes

[@®/d® + K*(x)]E,_(x) =0, (5)

where

1 - (x/8)? LB

2 2
=a®+ -
k() x = i€ (x=ie)?’

x = (ko2)(ve/c)'/*N8,

a?=[(w2/w®) =1](c/2)N*/38%,
e=F/w)c/vy) EN?, &=3 §/2N?,
8=1—(F/w)(c/v,)?/3, B=N(vy/c)''?,
N =(koL)(vy/c)*2.

If /e <1, k*(x) has the form shown in Figs. 1
and 2 when 6/e =[3(v,/c)? = (7/w)?]*?/(7/w) is
greater and less than one, respectively.

We expect £, to grow temporally at nearly the
homogeneous rate (7/w =V3 v,/c) when the densi-
ty gradient is very weak so 5%/e* <« 1. In the re-
gion where E , is resonant (Jx|<¢), Eq. (5) can
then be approximated as

{@?/d:® +a? + (i/e)1 = (x/6}]E,,_= 0. (6)

Equation (6) is of the same form as the quantum-
mechanical harmonic-oscillator equation with a
complex potential. In order that the solution to
Eq. (6) be spatially decreasing at large |x|, we
require (o +i/)oVe =2(n +5) exp(in/4), where n
is a non-negative integer. Inserting the defini-

Amplification
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FIG. 1. 62/€?«<1 (weak inhomogeneity). We plot
(@) Imk2(x); (b) Rex’(x) with @ =0; and (¢) Rek%(x) with
a?>0.
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tions of §, €, and o, we solve for the growth rate

v R L R

The requirement that 6°/e® <« 1 implies that
N=koL(vo/cy?>>n+5. (8)

Under this restriction, g/e <1 and the wave is
confined to the region |x| <<€, justifying our pre-
vious assumptions. The frequency mismatch,

w.? - w? (represented by @?), can only assume
discrete values so that the trapped EM wave does
not undergo phase mixing. Note also that Z >0.
We call this instability the “resonant” instability.
This instability will not produce a large backscat-
tered wave since the energy is primarily confined
to the resonant region of the electrostatic wave.
The growth rate in Eq. (7) converges to the homo-
geneous value as k,L becomes very large.

We now consider a somewhat stronger density
gradient (still weak enough to neglect g). We ex-
pect unstable waves to have growth rates much
smaller than the homogeneous value so §2/e?>1.
In this case x*(x) has a simple pole at the cutoff
of £, (at x =0) bounded on either side by cutoffs
(k*=0). A well is therefore formed which can
trap the backscattered waves. The well is pro-
duced by AJ,_, which is antiparallel to the usual
linear currents generated by E,, . AJ, can lo-
cally reverse the sign of the total current gener-
ated by E,_ near the cutoff of E,, , where the
total linear currents are small. The sign of ¥2(x)
is therefore locally reversed, and the well is
formed as shown in Fig. 2.

For convenience, we define F(x,¢) to be a solu-
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FIG. 2. 62/€’>1 (strong inhomogeneity). We plot
(@) Imk2(x); (b) Rex?(x) with @ =0; and (¢) Rex?(x) with
al>g,
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tion to Eq. (5) which contains the oscillating time
dependence of E,_, but does not contain the tem-
poral growth. E represents a wave which propa-
gates and is trapped in the well. Since the mag-
nitude of £ is independent of time, in each circuit
of the well, E ccn have no net amplification. The
energy absorbed by E from the pump must be bal-
anced by the energy lost through the evanescent
region. The spatial phase variation of £ must be
adjusted so that phase mixing of the wave trapped
in the well does not take place. Mathematically
stated, we must obtain solutions to Eq. (5) which
correspond to outgoing waves at large negative «x
and which are spatially decreasing at large posi-
tive x. As in the previous case, Eq. (5) is an
eigenvalue equation with only certain values of «
permitted where € is fixed for a given «.

We first consider the case when the length of
the evanescent region is greater than or of the
order of the length of the well (¢?<0 or 82a*<1).
The well is primarily amplifying in this case. E
can not have zero net amplification in one circuit
of the well since the large barrier will not allow
enough energy to pass to balance the energy gain
in the amplifying well. Exponentially unstable
solutions therefore do not exist.

If the evanescent region is very short and the
well is very wide (8%a*>>1), Eq. (5) assumes the
form of Budden’s equation with an energy source
in the vicinity of the singularity and short evanes-
cent region. We match the solution in this region
with the turning-point solution near the right-
hand side of the well using a transformation first
used by Langer and later applied by Bafios® in
plasma physics. We obtain the following disper-
sion relation”:

20°6% — je + 54 Infexp(n/a)=1]=m+3)r, (9)

where n is a positive integer. The first term on
the left-hand side of the above equation, which
represents the integrated phase of E,, across
the well, must equal (z +3 )7 to prevent phase can-~
celation of the trapped waves. The spatial ampli-
fication of E as it scatters off the singularity at
the left-hand side of the well (logarithmic term)
must balance the spatial damping of E occurring
primarily in the right-hand side of the well. In-
serting the definitions for o, €, and 5, we solve
for the growth rate

Y _ _ Ve, (2v0)In{exp[2nN*/(n +3)]° - 1}
w -7 Z)Q'*' (-CJ> [47TN2(7Z +‘_i_)]1/3 , (10)

where N =kyL(v,/c)*?. The assumptions that 62/

e2>»1, a*6*>1, and p/e «1 require
(0o/c)'? <N = koL (vy/c)%? « (n+3)7. (11)

When the pump is far above the homogeneous
threshold, we can approximate the inhomoge-
neous threshold for this instability by demanding
that the second term on the right-hand side of
Eq. (10) be positive. We denote this instability
the “nonresonant” instability since the well ex-
tends beyond the resonant region of E,. The
backscattered EM waves in this instability grow
exponentially in time only when they are weakly
trapped in the well (the evanescent region is
short). We note that in this instability the plas-
ma with the pump as the energy source traps,
amplifies, and emits EM ratiation very much
like a laser.

Comparing the inequalities in Eqgs. (8) and (11),
as the density gradient becomes too strong for a
given resonant mode to exist, its nonresonant
counterpart will be unstable. In spite of the ap-
parently different trapping mechanisms which
produce the resonant and nonresonant instabili-
ties, the similarities between the inequalities in
Egs. (8) and (11) seem to suggest that they are
different limits of the same instability. Combin-
ing the inhomogeneous threshold of the nonreso-
nant instability with the homogeneous threshold
of the resonant instability, we arrive at an ap-
proximate minimum threshold for instability:

vo/c= é‘(Ewoz/‘hrnorncz)“2

=3°12(y /i) +0.52(k,L)" /% (12)

We will now speculate on probable saturation
mechanisms of the instabilities discussed above.
The trapped waves will grow rapidly in time and
begin to deplete the pump. Since the unstable
waves are eigenmodes of a well whose shape is
a function of the pump intensity, a small deple-
tion of the pump may result in a shift in the fre-
quency of the unstable eigenmodes of the well.
Therefore, the initially unstable waves saturate
although waves with slightly different frequencies
will then be unstable. The EM pressure of the
scattered wave, which is strongly peaked in the
vicinity of the well, may eventually expel the
electrons and ions and therefore blow off the en-
tire plasma which is towards the direction of in-
cidence from the well. This blowoff has been ob-
served in Ref. 2.

The plasma will be strongly heated in the vicin-
ity of the cutoff of the backscattered EM wave as
the instabilities evolve. Since the frequencies of
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the plasma wave and backscattered EM wave are
approximately equal, half the energy leaving the
pump will go directly into the unstable plasma
wave. All of the energy in this electrostatic
wave will eventually be locally absorbed by the
plasma near the cutoff of the EM wave since the
plasma wave is nonpropagating. When the den-
sity gradient is weak, most of the energy in the
scattered EM wave is trapped in the resonant
region of the plasma wave, and therefore a large
fraction of this energy will eventually be locally
absorbed by the plasma. In stronger density gra-
dients most of the energy in the scattered EM
wave will escape from the plasma.
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The temperature dependence of the bend elastic constant of N-p-cyanobenzilidene-p-n~
octyloxyaniline near the smectic-A—nematic transition temperature T, is found to obey
the power law (' — T,*)™" with classical values for v, in purer samples. Deviations from
this value are discussed. Scanning calorimetry indicates that for purer samples the tran-
sition is either weakly first order or a A transition.

Recently, de Gennes® has formulated an analogy

between the superconducting-normal metal tran-
sition and the second-order nematic-smectic-A
transition. In the former case, the fluctuations
of temporal Cooper pairs in the normal state
lead to an increase in the normal-state diamag-
netic susceptibility near 7,..? In the latter, the
density fluctuations in the nematic phase (which
may be described by an order parameter, ¥),
due to the continual production of evanescent,
submicroscopic smectic regions, lead to an in-
crease in the nematic elastic constants® of bend
(K,) and twist (K,) so that

0K ;=K (T) — (K ;)y=(const) (T — T,) " 74, (1

where 7, is the nematic-smectic transition tem-
perature, (K,), is the value without the enhance-
ment due to the order-parameter fluctuations,
i=2, 3. Here measurements are presented on the
temperature dependence of K,(7) for CBOOA (N-
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p-cyanobenzilidene -p -n~octyloxyaniline). Fitting
the data with the functional form of Eq. (1), one
determines the four parameters (X),, (const),,
¥» and T, which best fit the data. This is done
by the well-known technique of minimizing the
weighted sum of the squares of the difference be-
tween the measured and computed values (i.e.,
x%) for K (T) with respect to the four parameters.
In the case of a second-order transition, 7, may
be measured independently and so does not enter
as a parameter in the fit. In the case of a first-
order transition the 7, in Eq. (1) should be re-
placed by 7T ,* <T, .5 Which is to be found.
CBOOA was chosen because McMillan? recently
indicated that he was unable to observe a latent
heat associated with the smectic-4 —nematic tran-
sition and that the transition was presumably sec-
ond order. Figure 1 shows a differential thermal
analysis of the transition made on 9.1 mg of puri-
fied CBOOA at constant pressure. An apparent



