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ma interaction, our simuIation parameters scale
as follows. For a CO, laser, the power is 3&10"
W/cm', the density scale length is L=2&10 '
cm, the time duration of the simulation is 6 psec,
the interaction is at a density of one seventh the
critical density, and the electron temperature is
1 keV.

On the other hand, for a neodymium-glass la-
ser the power is 2&& 10"W/cm', the density scale
length is 2&10 cm, the time duration of the
simulation is 0.6 psec, the interaction is at one
seventh the critical density, and the temperature
is still 1 keV.
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We solve exactly the temporal evolution and spatial dependence of a three-wave para-
metric instability in an inhomogeneous plasma. An initial fluctuation develops into a
pulse and grows initially with the same growth rate as it would in a homogeneous plasma,
Growth continues until convection saturation occurs. The pulse broadens as it grows and
eventually assumes the form of a totally amplified region flanked by two shock fronts.
Effects of damping are also discussed.

The basic equations governing the growth of a parametric three-wave instability in an inhomogeneous
medium, as discussed by Rosenbluth and Nishikawa, ' are

v, a, + Ba,/Bt+ v, Ba,/Bx=yoa, e""~', v,a, +Ba2/Bt —v, Ba,/Bx=yoa, e (1)

where y, is the growth rate for the instability in a homogeneous medium and ~ = (d/dx)[k, (x)+ k, (x)
+ k, (x)j, assumed to be a constant, determines the phase mismatch between the decay waves. In de-
riving (1) the amplitudes of the waves propagating (oppositely directed) in the plasma have been written
A,. = a, (x, t) e px(iv, .t —ik, x —if bk; dx ), and it is assumed that a,.(x, t) varies slowly in space compared
to exp( —ik,.x). This assumption is clearly inconsistent with (1) for z Ixl&k,„, and thus this equation is
limited to this range of x. In the following analysis we will assume Ixl «k, „/w, and also less than the
characteristic size of the system. Taking a Laplace transform in time and letting a; =a,e "" ', we
find

(p+ v, )a, + ~iK'v, xa, +v, Ba, /Bx=yoa, +a, (0), (p+ v, )a, + —,ia'v2xa, —v, Ba,/Bx=yoa, +a, (0). (2)

We choose initial values as a, (0) = 0, a, (0) = (—a/Wic )5(x —x,), where a represents the thermal level of
the wave amplitude, normalization chosen such that fa, d xa/vg', noting that (K') '~' is the region of
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wave interaction. Substituting a =a, exp[[(p+ v, )/v, —(p+ v, )/v, J (x —x,)/2j and eliminating a, we find

B'a 1, . P+ v, P+ v, ' y„' iK' y„a5(x —x,), +- v'x —i -- + a+ + a=
Bx 4 v| v2 vgv2 2 ~Kvgv2

Substituting

x = x /WK + (z/K )[(p + v, )/v, + (p + v, )/v, ],

we find

B'a/Bx" +-,'x"a+ (Z+-', i)a= (aZ/yo)&(x' —xo'),

The solution to Eq. (4), wei]. behaved at + ~ and satisfying the jump conditions at
x= xo, is

a(x, p) = (yg/ y)[q, (x)q„( x)e (x —x,)+ q„(x)g, (x,) B(x. -x] (0r'0ii —Ar'4r)

where

g, (x) =D;gx'e'"", Ar (x) =D.x-x(—x'e

(3)

(5)

are parabolic cylinder functions defined by

(g) [e-z /4/I'( p)]f e -zt- t /2t-u-1dt
P 0

Substituting (for x&x,) the integral expression (6) into Eq. (5), we find

(8)

a(x, p) = (xa/y, )m 'sinh(vZ) exp( ——,'x"+ —,'ix, ")
x f dsf dt exp( —e'"'sx'+e "4tx, ' ——,'s' ——,'t')s'~ 't '~.

0 0

Changing integration variables through the substitutions s = e" 's', t=e " s", and inverting the La-
place transform, the integration over p gives rise to

5(t WK v iv 2/(v i + v 2) —s —s —(x —xo)v 2v K /(v i + v 2)),

allowing the integration over s" to be performed trivially. Substituting s' = z[t+ v, '(x, —x)Jv,v,WK'/

(v, +v, ) and introducing the variables X=vv'x, T=v, vv't, o= v/v„nadV=~v "v„we find

(v,v, )'i' sinh(wX)~ f i(X+X„)n(T—+X„—X) 'dz ( z '~ —ix
a, X, T =

vg+v2
(8)

For XQXp interchange X and X, and subscripts 1 and 2. The casual region originating at X Xo T
=0 is given by Q&0. The integrand in (8) possesses saddle points at z =-,' + (4 —Q)'i'. If Q& 4, the ap-
propriate saddle is the one located in the upper-half z plane, giving (px»1)

(vv)&g2 3t 1 1)a(XT)= '' — ~ ~ 1 — -)

If Q( 4, the saddle points are located on the real axis, the one closer to z = 0 giving the dominant con-
tribution. We then have

a, (X, T) = [(v,v,)'~a/(v, + v, )~2m] exp/i(X+ X,)[X, —X —nT —o.(X, —X+ T)]/4(1+ n)j
~

m' hei X. /2Q
2 (10)

The condition Q« —,
' corresponds, for any point in space, to large T, and thus Eq. (10) represents the

limiting value of the amplitude. When Q- —, the amplitude is in the process of saturating, and the sad-
dle -point evaluation is invalid.
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FIG. 1. Temporal evolution of a parametric instabili-
ty, neglecting damping. A D-function initial value is
given at x = 0. In this case vi ——F2, so the instability
takes the form of a broadening pulse moving to the
right. The initial growth at the point x —xo ——(v&- v2)t /2

is given by po. A. =4.

—IO 0 IO 20 30 40
(x-x, ) ~K

For early times, but within the causal forward cone Q&0, Q-X(1+ o){ob.TI IX —X, I+ +AT/(I+ o)J} ',
thus the initial growth at any x is given by

a ,(X, nT) - exp 2
),~jIx x, I+2-~T/(I+ ~)]~T

l+a
In particular, at X= X, the initial growth is exponential with y, ff =y, (v,v, ) /(v, + v, ). We first discuss
(9) and (10) in the absence of damping, v, = v, =0. At any fixed T the maximum amplitude occurs at
X=X,+ T(1—a)/2, where Q is a minimum. Thus, the amplitude takes the form of a single pulse con-
vecting in the direction of the fastest moving wave with a position x=x, + (v, —v, )t/2. At this point Q
= 4X/nT', and thus the amplitude initially grows exponentially with a growth rate of y, . The relevant
growth rate for the instability is y„unless the convecting mode is limited either by the finite extent
of the plasma or by the region of effective phase matching, Ixl &k,„ja . The width 4 of this peak is
given approximately by b, = (v, + v, )t/2, the pulse thus broadening greatly as it moves. The convection
saturation of the amplitude a, (x, t)- exp(ny, j~'v, v, ) as Q- —, is physically due to the dominance in the
spectrum of a, (x, t) of wavelengths longer than the interaction length (g') '/'. In Fig. 1 is shown an
example of the temporal evolution of such a mode, calculated by numerical integration of Eq. (8).
Note that the amplitude temporarily overshoots its final value by about 50/p. In Fig. 2 is shown the
value of the amplitude at the center of the pulse as a function of time.

The inclusion of damping can produce qualitative changes in the temporal evolution of the instability.
In particular, if the amplitude maximum is convecting rapidly (v, »v, ) there may not be significant
amplification at x= x, at any time, but the amplification at the pulse maximum can still be quite large.
In Fig. 3 is shown a convective mode with v, = 2v, . The left-moving wave is damped, v, /WK'v, = 0.2,
and the right-moving wave undamped.

Consider for any Xthe maximum of a, (X, T) over all T. As long as v„v, &y, this occurs at a time
T given approximately by 4@=I. Substituting into Eg. (10) we find the envelope

a,„(x)- sinh(m). ) exp( —(w') ' '(v, /2v, + v, /2v, )I(X—X,)'+ 16KJ' ' —(a') ' '(v, /2v, —v, /2v, )(X—X,)). (12)

In particular, examining the point x = x, we find (p)W. » 1)

a,„(X,)-exp —," —— ' ——+~(, ,)',
K Vg V2 2 ')/0 Vg

(13)

and thus the condition for absolute instability, '
y, & (v,v, )'/'(v, /v, + v, /v, ), determines whether amplifica-

tion will occur at the same point in space at which a fluctuation occurs. In Fig. 4 a,„(x) is shown for
various values of the collision frequency.

a(X,T)

0 20 40 60 T

FIG. 2, Amplitude of the instability at the center of
the pulse, x —xo ——(v& —v&)t/2, for the case of Fig. 1, as
a function. of time.
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FIG. B. Temporal evolution of a parmaetric instabili-
ty, including damping. s&

—-2v~, X=4, v& ——0, v2/vw'v&

= 0.2.
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FIG. 4. Maximum (over t) amplitude a Qx) for vari-
ous collision frequencies, d, = v;/VK'v;. In this case X

=4, so the threshold for absolute instability occurs
when d&+ d&

——7l.

We have noted that the WEB approximation is valid for I(: x&k, or roughly x&1., with L a plasma
scale height. We note from (12) that in the case of interest (v, /v2»v, /v, ) the amplitude is an increas-
ing function of x, and moreover the largest allowable value of (X —X,),„=(hl )'/'»1. As we are in-
terested in a,„ for the case X= 1, we expand (12) for this value to find that the peak amplification any-
where in the plasma is exp[A(z —4v, /kv, )]. Thus, only in the case of very heavy damping will the am-
plification be affected.
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The operator algebra and an identity in the statistical mechanics of fluids are used to
demonstrate that the cumulant average of arbitrary products of appropriate combinations
of local fluctuating energy and density are scale and conformal covariant at the critical
point. These combinations are uncorrelated and are found by diagonalizing a matrix
whose elements are energy and density derivatives of pressure-density and pressure-en-
ergy correlations. The eigenvalues are the dimensions of the appropriate variables.

In this Letter we apply two lines of thought
(which we have discussed elsewhere" ) to the
simultaneous fluctuations of local density, 6p(x),

and local energy density, Ge(x), in a fluid at its
critical point. We identify two local fluctuating
quantities, each of which is a linear combination


