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Analysis of Three-Hadron Final States
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Unitarity implies a rapid variation (singularity} in an amplitude usually assumed to be
slowly varying in simple pairwise final-state-interaction fits to three-body final states.
Neglect of this singularity casts doubts on recent analyses of ~+N —

~t +~+&, among oth-
ers. Tentative suggestions for including the singular term are offered.

Final states with three or more hadrons are an
important source of information on the interac-
tion of unstable particles both in nuclear and par-
ticle physics. Unfortunately, our theoretical un-
derstanding of such states has provided very little
basis for the various phenomenological schemes
used to analyze them. In this paper we show that
the general constraints of unitarity lead to new
conditions on the multibody amplitudes that have
been ignored in analyses up to now. Their ne-
glect may account for a wide range of difficulties
ranging from the "wrong" sign for m+ N- w+ 4
amplitudes' obtained from analysis' of the reac-
tion m+N-n+ w+N to "wrong" values of the neu-
tron-neutron scattering length obtained from the
reaction n+ d - n+ n+P. We were alerted to this
difficulty by the results of numerical calculations
we have been doing in a unitary dynamical theory
of the m-N system" and in a model related to the
n-d problem. '

Since the condition we will obtain applies to
both the relativistic and nonrelativistic problem,
we will present its derivation in a symbolic man-
ner that applies to both. We shall only derive
the result for three-body final states, but much
of the analysis is appropriate to more particles.
Consider an amplitude T, , for going from a two-
body state to a three-body state in a particular
channel (i.e. , fixed Z, L, T, ete. ) (our results
would equally well apply to a one-to-three decay
amplitude). Decompose T, s into a sum of terms
depending on which pair interacts last,

where 7; is the two-body scattering amplitude of
the j-kth pair (i4je k) and f, is its coefficient in

3 This is the standard isobar or Fadde ev or

mu. ltiple-scattering decomposition. Usually T;
is taken to be dominated by a particular partial
wave I;, and then a, factor of q; " (where q, is
the j-k relative momentum) is explicitly removed
from f;. Apart from this and other similar
threshold kinematic factors, f; is usually as-
sumed to be slowly varying for a particular inci-
dent two-body partial wave and energy and hence
approximated by a constant over the final-state
phase space. We shall now use unitarity to show
that in fact f,. has a strong dependence on q,

The unitarity relation for T, , is

2s3 2 2P2 2 3 2 3P3 3s3

+Q, T, ,p, , r, *, (2)

;f; Im~;+Q; (Absf, )~,*=+,T, ,q, 7,*, .

where T, , is the elastic scattering amplitude;
p„p3 are the two- and three-body phase space;
and p, ; is the two-body phase space of the ith
pair. T~3' is the connected three-to-three ampli-
tude. Equation (2) is represented diagrammati-
cally in Fig. I. From (1) and the definition of
the imaginary part we also have'

ImT, , =Q; f; Im~;+Q;(Imf;)r;*.

We are not strictly interested in Imf;i, i but only
in its singular or absorptive part (abbreviated
Abs) due to singularities in the pair subenergies.
Singularities in the total energy relate to the to-
tal energy dependence of the f; that does not con-
cern us here. The first two terms in (2), since
they involve cutting all connected particle lines,
lead to just such total energy singularities. '
Hence we drop them and write [combining (3)
+ (2) and replacing Im by Abs]
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FIG. 1. Diagrammatic representation of the unitary relation, Eq. (2).

where we have used the fact that q; = p2i. Putting
(1) in (4) we obtain

Q f; ImT; +Q (Absf;)T;*

=+f; 7;q; 7;*+Q f, 7, q; T;*.

The first terms on the left- and right-hand sides
of (5) cancel by two-body unitarity (ImT, =v,q, T., *),
and we are left with

perturbation theory, even if the perturbation ex-
pansion diverges. '

We now turn to the question of how (7) might be
included in an analysis. We have yet to explore
fully the consequences of (7) and thus our re-
marks are preliminary. If we rewrite (1) in
terms of the more usual isobar parametrization2
(we assume T, acts only in the l, wave),

Equating coefficients of 7;* we get

Absf;=q; Q f, &;.

(6)

(7)

Eq. (7) implies

f, =A, +iq, '~"B, .

g+iqg ' Z fI a
A~j

(7I)

This is our major result. f; has a singular part
proportional to q; times

which is just the "non-i" part of T». Hence the
strength of the singular part of f; depends on the
amount of 7'» in the other isobar channels. Equa-
tion (7) is somewhat symbolic since the argu-
ments of f, and T, are .not written in. T, is a
function of q;. At the i-channel threshold (q; =0),
q,. is uniquely determined from energy and mo-
mentum conservation, but for arbitrary p; there
is a range of q, that must be integrated over in
(7). Hence (7) represents a set of coupled inte-
gral conditions on the f, 's. The full content of
these conditions is under investigation. In this
paper we only call attention to its general fea-
tures and give some simple approximate pre-
scriptions for implementing them.

Essentially this same result (7) was obtained
by one of us in 1967 in the context of the Faddeev
equations, " but its importance to the analysis
of three-body final states was not at all appre-
ciated. The 1967 paper shows the relation of (7)
to Watson's theorem and how it gives the entire
amplitude (not just a part of it) the phase 5. The
result (7) may also be easily obtained by a study
of the singularities of the multiple-scattering ex-
pansion. " One sees that the singularity comes
from the last rescattering, and hence its form
can be correctly obtained, for example, from

where A, and && are complex functions with no
physical q, singularities. A number of possible
ways to use (7') in an isobar analysis present
them selves.

(i) Since A,. and B, are supposed to have no
physical singularities, we might take them as
complex constants. This procedure doubles the
number of parameters over the type of analysis
in Ref. 2 and hence may not be practical.

(ii) Use (7') at q, =0 to give a set of equations
for the B, in terms of the A, and 7, , i.e. ,

(iii) Use a model such as our calculation+' to
determine B;/A, . Since the singularity in (7)
comes from the last rescattering only, ' a rea-
sonable model can predict this ratio much more
accurately than it can give A or B separately.

There are hopefully more and better ways to
impose the constraint (7) yet to be discussed. Of
the ways outlined above, (i) is the least biased,
but the hardest to implement, and (ii) is prob-
ably the most attractive with (iii) being used as
a test.

Before complicating an analysis by including
the constraint (7), we should ask when is it nu-
merically important. Since Absf; depends on

f, r, (iw j)„ it ca. n be. big if more than one isobar
pair is important. This will be the case for iden-
tical particles since then f, T, is just f; r; of dif-
ferent arguments. It also occurs if two or more
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different pair groupings are important as in n +N
—m+ & or p+K However, if the isobars are nar-
row and the energy high, f, r, e. valuated at the q,
corresponding to q; on or near the ith pair reso-
nance may be very small, and the effect may be
neglected. This is probably the situation in most
high-energy missing-mass studies of meson reso-
nances, but may not be in some moderate-ener-
gy studies. Unfortunately, the n-production anal-
ysis of Herndon et al. 2 is also not in such a re-
gime and (7) is important to them. For example,
the f, amplitude for s+ 1V -6+ s, which they take
to be constant, we would suggest should be written

states. This causes difficulties both for thresh-
old enhancements as in the neutron-neutron scat-
tering-length problem and for isobar analysis of
the type made by Herndon et al. for m+N-7t+m
+ N. ' In numerical models we have also obtained
this important variation. Neglect of this varia-
tion may invalidate the conclusions of Herndon
et al. as to the relative sign of various m-N reso-
nance decays to ~4 and pN. Our numerical cal-
culations' in fact give different signs from the
ones they obtain in at least one case crucial to
quark-model analysis. '

since b is a. P wave. The q'B term clearly varies
rapidly (quadratically), but more importantly it
is easily comparable to the A. term over most of
the phase space. This emerges both from a gen-
eral consideration of the ranges involved and of
the strengths of the competing pN and oN chan-
nels, and is a feature of our dynamical calcula-
tion. ' Similar difficulties occur in the study of
threshold enhancements like the n-n scattering
length in n+d-n+n+P since (7) is a threshold
singularity. Here too we have done a numerical
calculation that shows the rapid variation of f,
in the critical region. '

In conclusion we have shown that unitarity im-
poses a rapid variation on an amplitude usually
assumed to be slowly varying in simple pairwise
final-state-interaction fits to three-body final
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