Low-Lying One-Proton, Three-Neutron-Hole States in ²⁰⁶Bi

M. Fujioka, M. Kanbe, and K. Hisatake Tokyo Institute of Technology, Ohakayama, Meguro-ku, Tokyo, Japan (Received 21 May 1973)

Precision conversion-electron and γ -ray measurements have revealed a strong M1 transition of 10.84 keV between the first and the second excited states of ²⁰⁶Bi, resulting in a substantial revision of the previous decay scheme of ²⁰⁶Po. Thus it has become possible to interpret some of the low-lying states in ²⁰⁶Bi in terms of one-proton, three-neutron-hole configurations, in correspondence with the one-proton, one-neutron-hole multiplets in ²⁰⁸Bi.

From various experimental and theoretical studies the excited states of ²⁰⁸Bi are well understood in terms of one-proton, one-neutron-hole multiplets, and it is of interest to see how these multiplets are perturbed by the extra two neutron holes in the adjacent odd-odd nucleus ²⁰⁶Bi. However, no detailed study has been performed concerning the level scheme of ²⁰⁶Bi, except for an extensive study of the decay of ²⁰⁶Po by the Uppsala group.¹ According to this work the parent even-even nucleus ²⁰⁶Po $(J^{\pi} = 0^+)$ feeds mainly the 1379.1- and 920.7-keV levels of ²⁰⁶Bi, which decay, respectively, via three-step cascades of two M1 and one E2 transitions to the 6⁺ ground state of ²⁰⁶Bi: one should therefore assign $J^{\pi} \ge 2^+$ to the 1379.1- and 920.7-keV levels. This assignment, however, cannot be reconciled with the rather small experimental $\log ft$ values² of 6.8 and 8.0, respectively, for the two levels; the experimental $\log ft$ values for the second forbidden β decay are between 11 and 14. This discrepancy⁸ seems to have baffled further studies of ²⁰⁶Bi. The present paper reports the results of precision conversion-electron and γ -ray measurements in the decay of ²⁰⁶Po, in which a consistent decay scheme has been constructed and, especially, the above-mentioned discrepancy has been removed. This leads to a reasonable interpretation of most of the low-lying states of ²⁰⁶Bi.

The activity of ²⁰⁶Po was produced by irradiating a bismuth target with a 39-MeV proton beam, and the sources were prepared by a selective adsorption of polonium onto a limited area of a silver foil. In order to avoid the interfering daughter radiations⁴ the sources were treated periodically with hydrochloric acid to remove accumulated ²⁰⁶Bi. The experiment consisted of highresolution measurements of conversion-electron and γ -ray spectra with the Institute for Nuclear Studies iron-free $\pi\sqrt{2}$ spectrometer and a Ge(Li) detector, respectively. γ - γ coincidences em-

ploying two Ge(Li) detectors were also performed. Many transitions were newly detected in ²⁰⁶Bi, and multipolarities were determined for 65 transitions from conversion coefficients and L- and M-subshell ratios. Especially, intense conversion lines were newly found in the L-Auger region of bismuth, and these were identified as a new transition of 10.84 ± 0.02 keV converted by the M, N, O, and P shells, as shown in Fig. 1(a). This transition has a total intensity of 93% per electron capture of ²⁰⁶Po and has a pure M1 multipolarity [more specifically, M1 $+(8 \times 10^{-4} \%)E2$ from the present experimental Msubshell ratios]. In addition six pairs of transitions were observed both in conversion and in γ spectra, whose respective energy differences are consistent with 10.84 keV, as shown in Fig. 1(b). These data together with the result of $\gamma - \gamma$ coincidences located the 10.84-keV transition between the 59.91-keV first-excited 4⁺ and the newly introduced 70.76-keV second-excited 3⁺ states. As a result, most of the energy and spin values of the previous level scheme of ²⁰⁶Bi were revised; especially, the previous levels of 1379.1 and 920.7 keV with $J^{\pi} \ge 2^+$ were replaced by the 1389.45- and 931.70-keV 1⁺ levels with $\log ft$ values of 6.6 and 8.0, respectively (see Fig. 2). Thus the discrepancy mentioned above between the spin and parity assignment and the log ft values has now been removed. In addition, seven new levels of ²⁰⁶Bi were incorporated into the decay scheme of ²⁰⁶Po. The level scheme of ²⁰⁶Bi from the present work combined with the results of the α decay⁵ of ²¹⁰At and the γ decay⁶ of the 1042.6-keV 10⁻ isomer is shown in Fig. 2.

An interpretation of the levels of ²⁰⁶Bi in terms of one-proton, three-neutron-hole configurations is indicated in Fig. 2 together with the correspondence with the levels^{7,8} of ²⁰⁸Bi. The interpretation is mainly on the spin-parity and energy basis. As is seen from the figure the low-lying

FIG. 1. (a) Conversion lines of the 10.84-keV transition from the decay of ²⁰⁶Po observed among the *L*-Auger lines in bismuth. The broken line indicates the *L*-Auger spectrum obtained from the decay of ²⁰⁷Po under the same experimental conditions. (b) Parts of conversion-electron (upper) and γ -ray (lower) spectra showing some of the transition pairs whose energy differences are equal to 10.84 keV within the experimental error. The transition energies are indicated in keV. The conversion spectrum was taken at an instrumental resolution of 0.1%, and the resolution of the Ge(Li) detector was 2.1 keV at 1.33 MeV. Peaks due to the daughter nuclide ²⁰⁶Bi are also seen.

levels of ²⁰⁶Bi can be reasonably explained by assuming the proton, neutron-hole multiplets in ²⁰⁸Bi to be little perturbed by the presence of an extra pair of neutron holes in ²⁰⁶Bi. An exception is the relative position of the multiplet related to the $p_{1/2}$ neutron hole. The centers of gravity of the $h_{9/2}p_{1/2}^{-1}(f_{5/2}^{-2})_0$ and $h_{9/2}f_{5/2}^{-1}(p_{1/2}^{-2})_0$ multiplets in ²⁰⁶Bi are reversed in comparison with those of the corresponding multiplets in ²⁰⁸Bi. This is just the effect of particle-hole interchange, being affected by the pairing interaction which is stronger in the $f_{5/2}$ orbit than in the

FIG. 2. Level scheme of ²⁰⁶Bi from the present experiment combined with the results from α decay (Ref. 5) of ²¹⁰At (166.0-keV level) and γ decay (Ref. 6) of the 10⁻ isomer (1042.6-keV 10⁻, 814.6-keV 8⁺, and 139.5-keV 7⁺ levels), in comparison with the level scheme (Refs. 7 and 8) of ²⁰⁸Bi. The centers of gravity of the $h_{9/2}f_{5/2}^{-1}$ multiplet in ²⁰⁸Bi and the $h_{9/2}f_{5/2}^{-1}(p_{1/2}^{-2})_{J=0}$ multiplet in ²⁰⁶Bi are put at the same position for convenience. The error in the energy value of the levels of ²⁰⁶Bi obtained from the present experiment is typically 0.03 keV.

 $p_{1/2}$ orbit. The same situation is observed in the odd-mass isotones of N = 123; the $\frac{1}{2}$ state is always higher than the $\frac{5}{2}$ ground state, and the energy differences are $\Delta \epsilon = 126$, 2.3, 69, and 109 keV, respectively, for Z = 80, 82, 84, and 86, to be compared with $\Delta \epsilon = 80$ keV for ²⁰⁶Bi with Z = 83. Similar energy shifts are expected for the $f_{7/2}p_{1/2}^{-1}$ and the $i_{13/2}p_{1/2}^{-1}$ multiplets, which are indicated by upward arrows in Fig. 2. Since the main configuration of the four neutron holes in ²⁰⁶Po in its ground state is $(p_{1/2}^{-2})_0(f_{5/2}^{-2})_0$, the ground state of ²⁰⁶Po is approximately described by

$$k(^{206}\text{Po}) \approx [0.8(h_{9/2}{}^2)_0 + 0.4(f_{7/2}{}^2)_0]_{\pi}$$

$$\times [(p_{1/2}^{-2})_0 (f_{5/2}^{-2})_0]_{\nu},$$

where the proton part is taken from a shell-model calculation⁹ of 210 Po. From this wave function the allowed electron capture is most likely to feed the $f_{7/2}f_{5/2}^{-1}(p_{1/2}^{-2})_0$ configuration in ²⁰⁶Bi via a β transition between the spin-orbit partners $\pi f_{7/2} \rightarrow \nu f_{5/2}$. Hence the $f_{7/2}f_{5/2}^{-1}(p_{1/2}^{-2})_0$ configuration is assigned to the 1389.45-keV 1⁺ state, which is most strongly fed from ²⁰⁶Po with a log*ft* value comparable to those for the corresponding electron captures of the odd-mass Po isotopes; the log*ft* values are 6.0 for ²⁰⁵Po($\frac{5}{2}^{-}$) \rightarrow ²⁰⁵Bi(1001.0 keV, $\frac{7}{2}^{-}$) and 6.6 for ²⁰⁷Po($\frac{5}{2}^{-}$) \rightarrow ²⁰⁷Bi(992.3 keV, $\frac{7}{2}^{-}$). Mixing of $[(f_{5/2}^{-2})_0(f_{5/2}^{-2})_0]_\nu$ and $[(f_{5/2}^{-2})_0 \times (p_{3/2}^{-2})_0]_\nu$ is expected in ²⁰⁶Po, giving rise to electron captures to $f_{7/2}f_{5/2}^{-1}(f_{5/2}^{-2})_0$ and $f_{7/2}f_{5/2}^{-1} \times (p_{3/2}^{-2})_0$ in ²⁰⁶Bi, but these are expected to lie close to or higher than $Q_{\rm EC} = 1.82$ MeV.

The other excited states of ²⁰⁶Bi higher than 700 keV are hard to interpret at present. Appearance of an 8^+ state at 814.6 keV having no analog in ²⁰⁸Bi suggests breaking of the neutron-hole pair in this energy region. Further study by other means is desirable in order to understand more fully the excited states of ²⁰⁶Bi.

We are indebted to Professor K. K. Seth for suggesting the problem involved in the previous

decay scheme of ²⁰⁶Po.

²The original $\log ft$ values of Ref. 1 were revised in K. K. Seth, Nucl. Data, Sect. B 7, 161 (1972).

³In order to remedy this discrepancy, it was suggested in *Nuclear Data Sheets 1959–1965*, compiled by K. Way *et al.* (Academic, New York, 1966), Part 11, p. 2518, that there might be a 1⁺ level just above the 1379.1-keV level or an as yet unobserved M1 transition in cascade with the 59.9-keV transition. The present experiment confirmed the latter of these alternatives.

⁴M. Kanbe, M. Fujioka, and K. Hisatake, Nucl. Phys. A192, 151 (1972).

⁵N. A. Golovkov *et al.*, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>33</u>, 1622 (1969) [Bull. Acad. Sci USSR, Phys. Ser. 33, 1489 (1969)].

⁶Yu. N. Rakivnenko *et al.*, Ukr. Fiz. Zh. (Ukr. Ed.) <u>17</u>, 1037 (1972).

⁷W. P. Alford, J. P. Schiffer, and J. J. Schwartz,

Phys. Rev. Lett. <u>21</u>, 156 (1968), and Phys. Rev. C <u>3</u>, 860 (1971).

⁸D. Proetel et al., Nucl. Phys. <u>A161</u>, 565 (1971).

⁹T. T. S. Kuo and G. H. Herling, Naval Research Laboratory Report No. 2258, 1971 (unpublished).

Finite-Range Calculations of the *j* Dependence of $({}^{12}C, {}^{11}B)$ and $({}^{16}O, {}^{15}N)$ on ${}^{62}Ni^+$

L. A. Charlton

Department of Physics, The Florida State University, Tallahassee, Florida 32306 (Received 30 April 1973)

Full finite-range calculations, including recoil effects exactly, have been performed for single-proton-transfer reactions on ⁶²Ni. Projectiles of ¹⁶O and ¹²C are considered. It is found that the ratios of cross sections leading to the ground and first excited states in ⁶³Cu are in good agreement with experiment. This is not true when recoil is neglected.

In a recent paper,¹ a study of the j dependence of heavy-ion-induced reactions was reported. In particular, ¹²C and ¹⁶O projectiles (at energies of 78 and 104 MeV, respectively) were used to transfer protons to states in various nuclei of $j_{>}(j = l + \frac{1}{2})$ and $j_{<}(j = l - \frac{1}{2})$. Kovar *et al.*¹ attempted to calculate the ratios of these cross sections by the use of the finite-range computer code RDRC² (which neglects recoil) and were unsuccessful. Overpredictions by factors of 2-10 were found. It was argued that the no-recoil feature of the calculations was responsible. The purpose of this Letter is to report that, indeed, the use of the exact finite-range computer code MERCURY,^{3,4} which also includes recoil exactly, provides reasonable ratios for one of the targets

studied (⁶²Ni).

Differential cross sections were calculated here for proton transfer to the ⁶³Cu ground state and its first excited state. These levels were assumed to be pure single-particle states with configurations $2p^{3/2}$ and $2p^{1/2}$, respectively. The distorted waves were generated by use of a volume Woods-Saxon plus Coulomb potential. The parameters characterizing the interaction are shown in Table I. The first set was found by Becchetti *et al.*⁵ to match the elastic scattering of both ¹⁶O and ¹²C at forward angles and for targets in the region of the nuclei considered here. The energy, however, was 38 MeV (60 MeV) for ¹²C (¹⁶O) which is about half that used here. The second set was picked somewhat arbitrarily to test the

¹E. Arbman, Nucl. Phys. <u>3</u>, 625 (1957); E. Arbman and P. A. Tove, Ark. Fys. <u>13</u>, 61 (1958).