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Resonance Modes of Interstitial Atoms in fcc Metals
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By means of computer simulation of a copper lattice, we have found two resonance modes
of the (split) interstitial configuration. The low frequencies of about m~„/7 are due to the
strong negative "leaf springs" typical for the strongly compressed lattice around the inter-
stitial atom. It seems very likely that many longstanding problems associated with point
defects can be explained in terms of such modes.

The vibrations of an ideal lattice can be con-
siderably changed by introducing point defects.
The square of the characteristic frequency as-
sociated with the defect is &u'=fe/ms, where fe is
a typical coupling constant and m„ the defect
mass. Two kinds of new modes can occur: (i)
localized modes with frequencies above the max-
imum frequency &o,„of the ideal lattice, if fez f
and/or mes m; and (ii) resonance modes with
&u((&u~,„, if f„«f and/or me»m. In the case of
a self-interstitial (m, = m) in metals, the lattice
is locally strongly compressed (fe»f). There-
fore this simple picture suggests that only local-
ized modes, but no resonance modes, exist.

The complicated dynamics of a self-interstitial
in Cu has been investigated by computer simula-
tion, using a Born-Mayer potential as described
earlier. ' In this model the (100)-split interstitial
(dumbbell) turns out to be the only stable defect
configuration. This is further true for a Morse

potential which has also been used. (Experimen-
tally, the dumbbell has been confirmed to be the
interstitial configuration in Al. 's) By transfer-
ring small momenta to the dumbbell atoms, sev-
eral localized modes have been found. '

With the extension of these computer calcula-
tions, we have now found two unexpected reso-
nance modes with frequencies of about a&,„/7.
Figures 1 and 2 show the displacements of the
dumbbell atoms and the nearest neighbors for
these two modes. In the first mode (Fig. 1) the
two dumbbell atoms move with equal amplitude
along the dumbbell axis (symmetry A,„), whereas
the second mode (Fig. 2) is a libration of the
dumbbell (symmetry E&'). Figure 3 shows as a
typical result of the computer calculations the
motion of a dumbbell atom in the libration mode,
initiated by an impulse to the dumbbell atoms in
opposite directions along the x axis at time t=0
(a total energy transfer of 0.03 eV). The displace-
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FIG. 1. Schematic representation of the axial reso-
nant mode (symmetry Aa, ) of the 500)-split interstitial
in a fcc lattice.

FIG. 2. Schematic representation of the libration
resonant mode (symmetry E ) of the $00)-split inter-

8
stitial in a fcc lattice.
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FIG. B. Displacement of upper dumbbell atom in the
libration mode versus time. T„ is the vibration time

0
of the resonance mode; T~» ——2s/u~», ao ——8.61 A; to

= 8.27x 10 i5 sec; the Morse potential V(R) =D(exp[—2n
x (R —Ro)]), with D=0.180 eV, u=2. 23 A, Ro ——2.57 A.

ment of the dumbbell atom exhibits the low-fre-
quency resonance mode which is only slightly
damped, as is expected of a good resonance.
Superimposed is a high-frequency and practical-
ly undamped localized mode which is also ex-
cited with this initial condition. The other, axial,
mode shows the same characteristics. For ei-
ther potential, both modes are clearly resonant
with frequencies differing by only about 30%.

The low frequencies of the resonance modes
can be explained by the coupling constants for a
central potential V(R):

ffii o 0)
y, ,(R) =6». &X.V(R) = 0 f~ 0

k0 0 f.)
where f~~= V (R), f~= V (R)/R, and where the X,
axis coincides with the direction of the vector R
connecting the two atoms. The constant f ~~

enters
for displacements parallel to R ("spiral spring"),
whereas f, enters for displacements perpendic-
ular to R ("leaf spring"). For an ideal lattice,
fq=fg' is the dominating force constant and f~=f~o

can be neglected in a first approximation. How-
ever, in the compressed region of an interstitial
both force constants are much larger and f~ can-
not be neglected. For the Born-Mayer potential
one obtains for the interaction of the two dumb-
bell atoms f„=6.7f ~~

and f~= —0.61f„; and for
the interaction between one dumbbell atom and
its nearest neighbors, f~~ =4.0f~~ and f~= —0.35f ~to.

Thus, because of the strong repulsion of the
atoms, f~ is always negative and becomes com-
parable to f~~'. Two kinds of characteristic modes
are possible: (I) vibrations which considerably
stress the strong spiral springs in the interstitial

region, giving rise to high-frequency localized
modes for which the relatively weak leaf springs
are not important, and (2) vibrations which stress
the strong spiral springs only slightly. In the lat-
ter case the negative leaf springs become impor-
tant. They lower the frequency and hence give
rise to resonance modes. We have also estimated
the resonance frequencies analytically and found
reasonable agreement with the computer results.

Such resonance modes should also occur for
other interstitial structures (and also in other
types of lattices), since, as a consequence of the
strong interaction, the leaf springs in the inter-
stitial region should always be comparable to f~~'.

These negative springs may even lower the reso-
nance frequency for a particular position so much
that eventually a&2 &0. Then this interstitial posi-
tion would be unstable. Thus the negative leaf
springs introduce a tendency towards instability:
They determine the stability or instability of a
certain configuration and lead to resonance modes
for the stable configurations.

The resonance modes seem to provide the gen-
eral basis for the understanding of many poorly
understood physical properties of the interstitial.
Some important examples are briefly discussed
for the case of a split interstitial:

(I) As has already been speculated by Flynn, '
low-frequency resonance modes could explain
the diffusion of the interstitial at low tempera-
tures. ' Indeed, if low-frequency modes are pres-
ent, the thermal displacements are very large
and may exceed a critical value when the modes
get thermally populated. For example, the axial
mode (Fig. 1) leads directly to a jump of the
dumbbell into the adjacent position along the axis,
whereas the libration mode (Fig. 2) leads to a
rotation of the dumbbell by 90 . By combination
of both modes the dumbbell jumps to the position
of its nearest neighbor, rotating at the same
time by 90'. This process has by far the lowest
activation t' nergy, in agreement with calculations
by Johnson and Brown. '

(II) As a result of the low-frequency mode E ',
the interstitial is strongly polarizable by an ex-
ternal shear stress. This explains the experi-
mentally observed extreme softening of the lat-
tice due to interstitials. ' Analytical calculations
show9 that such modes always lead to large and
negative changes of the elastic shear constants.
The recently observed anisotropy of the shear
modulus change in Al" can be directly related
to the symmetry of the dumbbell.

(III) Preliminary analytical calculations show
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that the frequencies, and hence the stability, of
a dumbbell depend very sensitively on the pres-
ence of a nearby vacancy. Thus the instability
volume4' of a Frenkel pair and the correlated
recovery stages' should be closely related to res-
onance modes.
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Bounds on the exponents of the many-electron x-ray threshold anomaly are obtained,
and a relationship between soft- and hard-x-ray threshold shapes is derived. The spec-
tra of Mgg Sb f alloys and Al metal are shown to be inconsistent with the many-electron
theory of threshold exponents.

Many-electron theories of the soft-x-ray ab-
sorption spectra of simple metals predict the
"anomalous"' absorption-threshold shape'

A similar expression describes emission spectra.
Here e,(m} is the imaginary part of the dielectric
function, h~ is the photon energy, E~ is the
threshold energy, ( is a parameter with dimen-
sions of energy, 8(x) is the unit step function,
2@k is Planck's constant, and A, is proportional
to the optical transition matrix element between
a core electron initially localized at the origin
and a spherical-wave conduction-band electron
with angular momentum quantum number l. The
exponents of the threshold law, n„can be ex-
pressed in terms of the partial-wave phase shifts
5, for an electron at the Fermi energy experienc-
ing the scattering potential of the hole':

oo 2

u, = 2—' —2Q (2j+ I) —'
7f 0

Iln the absence of final-state intera, ctions, n, is
zero and Eq. (I) gives the step-function one-elec-
tron threshold law. j

Attempts to compare quantitatively the predict-
ed threshold law with experimental data have
been frustrated by the absence of accurate values
of the parameters A, and $, and by uncertainties
about the precise values of the phase shifts and
the form of the net electron-hole interaction.
Nevertheless, two qualitative predictions' of the
many-electron theory seem to have been con-
firmed by observations: (1) For forbidden transi-
tions from s-like core levels to even-parity con-
duction bands, Ao is zero and the P-wave expo-
nent n, is often negative: The electron-hole in-
teraction causes a suppressed, rounded threshold
shape. (2) For allowed transitions, A, is non-
zero, the s-wave exponent n, is normally posi-
tive, and e,(~) exhibits a divergent "spike anom-
aly. "

The purposes of this paper are (I) to empha-
size that the Friedel sum rule relates the expo-
nents o., and n„(2}to derive a set of inequalities


