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Parametric excitation of longitudinal plasma osci11ations can occur when a plasma is
simultaneously irradiated by two laser beams whose frequencies differ by (2/n)~&„n =1,
2, 3,... , where «&8 is the electron plasma frequency. We examine (i) the effect of a fre-
quency mismatch on the excitation of the principal mode, (ii) the mode coupling in an in-
homogeneous plasma, and (iii) the radiation absorption efficiencies.

Recent experimental' and theoretical results' '
indicate that enhanced absorption of radiation by
a plasma can occur through the excitation of a
large-amplitude longitudinal wave at the beat fre-
quency of two laser-beams. %e investigate this
excitation for a homogeneous, cold plasma, show-
ing, in a weak-field approximation, that the para-
metric resonances fall into the regions of insta-
bility of the solutions of a nonhomogeneous
Mathieu equation. The time dependence of the
solutions is a function of the mismatch, 6~, be-
tween the beat frequency, A~, and the natural
plasma frequency ~~. By considering ~~ to be
spatially dependent, we generalize our solution
to the case of an inhomogeneous plasma. This
treatment is presented as an alternative to that
of Rosenbluth and Liu, ' who solve the longitudinal
wave equation directly, and to that of Kaufman
and Cohen, ' who formulate the interaction in
terms of the local longitudinal dielectric constant
with vanishingly small damping. The present
method enables us to calculate the steady-state
spatial distribution of power transfer as a func-
tion of the dissipation rate. In particular, in the
presence of collisions, transfer occurs over a
region defined by 5&@(x) = + v/2, while when con-
vection predominates, the zone of transfer is
5~(x) =+ Da&v, '/2U~'; v is the collision frequency,
v, the electron thermal velocity, and v~ the plas-
ma-wave phase velocity. %e then calculate the
transfer efficiencies for parallel and antiparallel
laser beam.

Consider two electromagnetic waves:

E,. '(r, t) =E, sin(w, .t —k, r), i=1, 2,

linearly polarized in the positive y direction,
propagating through a cold homogeneous plasma
along the x direction, at frequencies ~, much
above the plasma frequency ~~. The equation of
motion of an electron fluid element in the com-
posite field E =Ey +E2 is

~ 0

A+ vA = (e /m)(E '+ A && B '/c+ E,), (2)

where A = r —r, is the displacement of the fluid
element from its equilibrium position r„E, is
the self-consistent electrostatic field, and v is
the longitudinal damping rate. Assuming that e,.
= (eE/mc~, )«1, A„ lk, - k. , I «1, and v « ~;, and
making use of ~~«('',-, we find, for the longitu-
dinal displacement A, at the beat frequency 6(',

d'A„/d7'+ (v/6&v)dA„/d 7+ I5 —e cos(r -kxo)]A„
= —(e/k) sin(~ —kx, ).

k.=k, +k„e.= —,o, n, (a&, + ~,)'/auP.

For small c the regions of instability of the
Mathieu equation (3) lie in the vicinity of the

(5)

Here, T= A&et and 5=(&u~/D&u)'; e and k depend on
the mutual orientation of the wave vectors, k,
For parallel beams

1
kp

—-k, -k„p= 2

and for antiparallel beams
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a+ va/2 = v, sing,

Qp = 50 Cosftg —Q5(d~

(7)

(8)

where v, = (e/2k) A&a and 5&@ = &u~ —Ee. In order
to clarify the behavior of the solution, we solve
the system of Eqs. (7) and (8) in two limiting
cases.

(A} When v —0, we obtain

a(t) = (2vo/Otal) sin[(5&v/2) t],

q(t) = m/2 —t5(u/2.

(9a)

(9b)

At perfect matching, 6~ = 0, we have a = v, t, in
agreement with Rosenbluth and Liu. ' When, how-
ever, 6+ 0, the plasma wave is merely ampli-
tude modulated.

(B) When ve0, the system (7) and (8) admits of
a steady-state solution

a, = ( 2 /4+ 5(d') ' ',

tang, = v/25&v.

(10a)

(10b)

The nonzero, constant phase shift p, is responsi-
ble for the irreversible transfer of energy from
the transverse waves to the plasma, in contrast
to the first case where the apparently irreversi-
ble transfer at 5~ =0 results only in storing ener-
gy in the plasma wave.

We will now deal with the effect of plasma in-
homogeneity, using the above results as a local
approximation. This is possible when the wave
number k is much larger than the reciprocal of
the density-gradient scale length. Let us first

points 6 =j'/4 in the (5, e) plane. ' The frequency-
matching conditions are, therefore, m~ = (j/2) Bur,

j=1, 2, 3, ... . For a&i the growth rate of an un-
stable mode is of the order of e'. The right-hand
side of Eq. (3) does not affect the stability re-
gions, but we see that at the principal resonance,
j= 2, we may expect parametric amplification
along with the normal (exponential) instability.
This amplification, as shown by Rosenbluth and
Liu, ' gives better coupling than the first-order
instability at her = 2~~. We will therefore limit
our analysis to first-order effects at the princi-
pal resonance, Av=&~. Since for CO, laser
beams of the same intensity, e, = 1.3 &10 "S,
where the laser beam Poynting flux 8 is in W
cm ', we may, for intensities of interest, carry
out an asymptotic analysis. ' Writing

A„(t, x,) = a(t) sin[Ox, + p(t) —b(ut],

we obtain to first order in ~ for the slowly vary-
ing amplitude a(t) and the phase cp(t)

p(x) = pZ(x, v)S, (x)S,(x), (12)

where the coupling constant P for parallel and
antiparallel beams is, respectively,

(13)

(14}

and the function

co~ 1 A(d v
(15)

describes the spatial distribution of energy trans-
fer. We may now define the width d of the inter-
action region as the full width at half-maximum
amplitude of the distribution (15), i.e., the bound-
aries, x„of the region satisfy the equation
&~(x, ) = + v/2. For example, in the case of a lin-
ear density distribution (e~/~&a)'=1+x/I, we
have 5&v = A&ex/2l, so that d = 2 vl/A~. In the limit
of vanishingly small dissipation (v-0), we have

Z(x, v-0) = —'5(p(x)), (16)

with p, = 5u /A&u, reflecting the boundedness for
all times of the plasma wave amplitude except at
5&@=0. One expects, therefore, that (16) must
follow directly from (9) and (11'} in the limit T
—~, as can indeed be demonstrated.

The function Z(x, v) in its form (15) directly
represents the effect of collisions if v is identi-
fied as the collision frequency. In contrast, let
us now consider the collisionless case in which
all power transferred to the plasma wave is con-
vected away by the latter to be dissipated outside
the region of transfer. The relevant damping
rate v„„,to be utilized in (15}is the inverse of
the time when balance is attained between the
power flowing into the growing, resonant mode
and the outgoing flux associated with its propaga-
tion into the region of lower density. Assuming
that the plasma wave is resonantly generated
over a spatial region of the order of its inverse

calculate, in steady state, the average power
p(x) transferred per unit volume located around
a specific point in space given by 5+(x). We have

p(x) =n(x}(1/T) f, A„Edt, (11)

where T is a beat period or integral multiple
thereof, n(x) is the local electron density, A„ is
given by (6), and the driving force E = mAm'(e/k}
&&sin(A&et —kxo). With (u, +(u, =2&@~ and S,=cE,'/
8m, we obtain
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wave number, 1/k, we obtain v„„,=kv = 6&vv, '/
v~', where v„v~, and v, are the wave group,
wave phase, and electron thermal velocities,
respectively. The width d „„,of the interaction
region, for a linear density distribution, is d „„,
=2lt, '/v~'. We note that Perkins and Flick'
found an identical interaction region for the exci-
tation of the oscillating two-stream instability on
a density gradient.

We may now proceed with the calculation of the
absorption efficiency q, defined as the fraction
of transverse flux transferred to the plasma
waves:
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(S out+ S out)/(S in S in) (17)

where S,. '" and 8, '"' are the incident and exciting
transverse fluxes, respectively. The values of
8 "' are obtained by integrating the equation of
transverse flux conservation

dS, /dx+dS, /dx = -P(x} (18)

using the condition of photon number conserva-
tion,

S, /&e, + S2/&, = const.

The signs + and —refer to parallel and antiparal-
lel beams, respectively. I et us assume ~y &'M2.

The variables are separable, giving the follow-
ing:

(i} For parallel bea. ms,

S, '"'= oS/(o+ Qy),

S, '"'= yS/(o+ Qy),

(20)

where S=S,'"+ QS, '", o=S, '"/S, '", Q= &, , /&o„
y=exp[(cr+ Q}q~j, and q~= p~S2'"L/(Q —1), with
L defined by (25}.

(ii} For antiparallel beams, with S, propagating
in the positive x direction we have

S, '"'= S,'"(Q+ b„)/o,

S, '"'= S,'"(o —b„)/Q,

where 6„ is the nonzero root of the equation

(o —b)(Q+ b) = Qo exp(bq, ),

with q, = P, S,'"L/(Q —1). The quantity

L(v}= f&„&I(x, v}dx

(24)

(25)

has the dimensions of length, depends in general
on the dissipation rate, and is characteristic of
the density distribution at 5u(x) = 0. Two special
cases are of particular interest: (a} For approxi-
mately linear distributions, &u~'(p -0) = a&@'(1

0
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FIG. 1. The absorption efficiency g, for the mixing
of two antiparallel CO& laser beams of incident intensi-
ties S&'" and S2'" at wavelengths ~&=9.6 pm and ~~
=10.6 p m, respectively, as a function of qua=13. 6
&&10 3S2'"L. L is the length defined by (25) and a =Si'"/
S~'". The dashed line corresponds to the maximum
power extraction, &~/~ i.

+x/l), L is equal to the density-gradient scale
length l, and is independent of the dissipation
rate. (b) For a resonance at the maximum densi-
ty, &u~'(ii -0) = Bio'(1 —x'/l'), we obtain, in con-
trast to the latter case, L =l(a~/v)'" (equal to
lv~/v, when convection predominates).

The above results are no longer valid when the
inverse of the damping rate, t, =1/v, is larger
than the time t„~ at which the amplitude (propor-
tional to n, l) of the growing, resonant mode is
limited by some nondissipative mechanism. '
%hen t„exceeds t„„, the dissipation rate is re-
duced by a factor =(t~/f„)'. Also, the singularity
of I(x, v) at 5&v=0 is now removed, so that L-0
(and, therefore, tI —0) as v-0.

The transfer (or absorption') efficiencies tI can
be represented model free as functions of the
parameters o and q. As a function of v, g in-
creases to the asymptotic value ao /co„whereas,
as a function of q, g saturates below D~o/&o„at
a value dependent on o. Because of better cou-
pling (P, » P ~), the antiparallel case is always
more efficient (for the same S,o, S», and L, r&,

In Fig. 1, g, is plotted as function of q,
for various values of the parameter o. In the
case of two CO, laser beams at 9.6 and 10.6 p.m,
respectively, we have Q —1=0.1 and P,=13.6
~10 "W ' cm. Take then, for example, L=2
cm and o =20. If we require 9/& efficiency, then
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q, =I.5 and it follows that the required intensi-
ties would be $, '"= 5.5 ~10"% cm ' and S, '"
=1.1 &&TO" W cm '. Such power densities are
presently available. "
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Plasma heating due to a high-frequency electric field near the electron cyclotron reso-
nance is investigated in a toroidal plasma confinement device, the FM-& spherator. It is
observed that electrons and ions are heated "anomalously" when the incident high-fre-
quency field exceeds a threshold value. Above the same threshold the parametric decay
instability of upper and lower hybrid waves takes place. We investigate the effect of the
decay instability and plasma heating on the confinement time.

Plasma heating by high-power, high-frequency
electric fields near the electron cyclotron fre-
quency have been investigated in a number of ex-
periments. ' 4 Recently, similar experiments
have been also performed in toroidal devices
such as the TM-3' and the Lawrence Livermore
Laboratory Levitron. '

In this Letter we report results of detailed ex-
perimental studies of plasma heating and con-
finement properties when a high-frequency elec-
tric field with high power is applied near the elec-
tron cyclotron frequency (i.e., the upper hybrid

frequency) in a toroidal device, the FM-l sphera-
tor. The main subjects of the present investiga-
tion are as follows: (a) Anomalous ion heating is
studied by measuring the ion temperature with

the Doppler-broadening method. Above a thresh-
old of incident rf power an anomalously fast heat-
ing of the main body of ions is observed. (b) This
threshold is shown to correspond to excitation of
the parametric decay instability of upper and

lower hybrid waves. ' ' The presence of such an

instability is observed experimentally, and it is
proposed that parametrically excited lower hy-
brid waves are responsible for the observed ion
heating. (c) The effect of decay instability and

plasma heating upon particle confinement is also
investigated. (d) Since the experiment can be
carried out with much lower neutral pressure
than in linear devices, it is possible to calculate
accurately the distribution of input energy in the
plasma. To the best of our knowledge this is the
first time that the foregoing points (a) and (c)
have been demonstrated experimentally. "

The FM-1 spherator has a superconducing ring
levitated magnetically to produce closed magnetic
surfaces for confining the plasma. ""The super-
conducting ring is excited with I~= 275 kAt, and

the ratio of the ring current I~ to the toroidal
field current I~ is 0.94. In this magnetic field
configuration the fluctuation level is minimum. "
The average magnetic field is about 2 to 4 kG.
Plasmas are produced by using 10.5-GHz micro-
wave power with a filling helium gas of 4&10 '


