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The critical magnetic field producing spin flop in many antiferromagnets is too small
to soften a three-dimensional magnon, i.e. , to remove the energy barrier between the
equal-energy phases. The barrier can be bypassed, however, via the softening of sur-
face magnons in a smaller field, forming two-dimensional surface-spin-flop states,
which broaden with increasing field and which catastrophically spread inward across the
three-dimensional material as the critical field is approached.

It has been suggested that many first-order
phase transitions are associated with normal
modes which partially but not fully "soften, " i.e. ,
which almost go to zero frequency. ' A nonzero
energy barrier between two states of equal free
energies provides restoring forces confining the
normal-mode oscillations to one side of the bar-
rier and to finite frequencies. In those first-or-
der transitions without superheating or super-
cooling (i.e., without hysteresis) there arises the
problem of how the system manages to hurdle the
energy barrier. We exhibit here a possible mech-
anism for one such system.

As first shown theoretically by Noel' and exper-
imentally by Poulis and Hardeman, ' at a critical
magnetic field II, (see Table I) applied along the
preferred axis of an antiferromagnet (AF) there
occurs a sudden, nearly 90' rotation of the sub-
lattice vectors into the so-called "spin-flop" (SF)
phase. The AF-SF phase transition is first order,
there being a finite jump in the magnetic moment,
and it can readily be made to take place near 0 K.
One's first thought is that it occurs at that field
II, at which the AF resonance frequency goes to
zero, i.e. , where the restoring torques vanish
and a mode softens. Early work either assumed
II, =H, or attempted to derive it. '

Anderson and Callen' identified the three pos-
sible critical fields II„B„andB4 described in

Table I. They argued that the AF-SF transition
should occur at B, in increasing II but at II, in
decreasing II; and that unless II, =II, =II„hyster-
esis should be observed.

Experimental evidence of the absence of hyster-
eresis has been accumulating. ' Furthermore,
the AF- SF transition in at least three materials'
takes place at a field measurably less than &4
and theoretically evaluated as II„ i.e. , in the
presence of a finite energy barrier.

Mills and Saslow' have shown that a field IIy
fully softens a surface magnon; Mills' has dem-
onstrated that above this same II, there can oc-
cur surface-spin-flop (SSF) regions, in which a
few layers of spins near a surface have turned
nearly 90 . According to Mills, the number of
layers involved decreases with increasing II.
We show that Mills's analysis omitted terms of
the same order of magnitude as those included,
and that in fact the number of layers increases
with increasing Il.

Our picture of the dynamics of the AF- SF
transition is as follows: At a field &, surface
magnons soften and SSF regions develop. Simi-
lar localized regions might also develop near im-
purity clusters, dislocation lines, and other im-
perfections. The SSF regions at first grow slow-
ly with increasing 11. Then as H-II, the SSF re-
gions catastrophically expand into three dimen-

TABLE I. Critical fields in antiferromagnets, in order of increasing
size and at 0 K, for the energy given by Eq. (1). All fields are along the
easy axis.

Field Effect

H( —H~H~+ H~2 2

a, =a,'ia,
H~ ——2H~H~ —H~2 2

H4 =2H@H~-H~
H) ——2H@ —H~

Surface magnons soften in increasing H; SSF
SF-phase magnons soften in decreasing H
Phase boundary, equal free energies, AF-SF
AF-phase magnons soften in increasing H
Phase boundar y, SF paramagnetism
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sions and encompass the entire material. The leading edge of an SSF region moves much as does the
edge of a Bloch wall. The system is continuously in stable equilibrium and the energy barrier is by-
passed. The SF-AF transition should ideally simply reverse the above sequence.

Following Mills' we write the energy as ES per surface spin, with

E = —2 ' g (cos ol21 + cos p2 1 +1) +2' Q [cos(cl21 —
p2 1+1) + (1 —51 0) cos(&21 —p2 1 1)j

+H Q (cosQ21 + cosP21„1).
1=0

Here the p spins in the 2lth layer from the (l= 0) surface make angles o21 with the preferred +z direc-
tion, and the B spins in the (2l+1)th layer make angles p„„with +z. The applied field H is directed
along —z, and II„and II~ are effective anisotropy and exchange fields, respectively, in the molecular
field approximation.

The study is limited to 0 K. On minimizing (1) with respect to n» and p2, +„we obtain, for /) 0,

sin(o'21+2 p2l+1) + S1 (l1-'21 p2l+1) = 2h p2l+1 ~ ~p2l+ l~

sin(o. » —p»+, ) + (1 —B, ,) sin(n» —p„,) = —2$ sinn» + g sin2O. » .

(2a,)

(2b)

Here $= H/Hs -and g =H„/Hs. We assume H„«H «Hs, or & «$ «1. Since H,'=H„Hs (as is well known
and as will be shown), we must keep in mind that g is the same order as $ . Let

+2l P2l+1 + 921 l+t +2ly2 P2ly1 ~ ~2lil'

By our a.ssumptions, neighboring spins a,re almost antipara, llel and o. and p vary slowly with l. Hence

q and e are small parameters (of order &, it develops). We insert (3) into (2), expand in powers of q
and q, and pass to the continuum limit. After much algebra there results, for / &0 and through order

282o /Bl2= (2g —$2) sin2o+X;

X=+(sin2O, coso, —2sino cos2o, )+2& sin4o +- e —+q
28/ 28

8) 8)

(4)

q + s + 2q —- 2e —(;]sino + g sin2n) -—%g 28+
l 3 Bl

We first solve (4) omitting X, which is of order
g2, and obtain root of (7), integrate, and set a, =ll/2. The re-

sult is'
(Bcl/Bl)2 = (2g —(2) sin2n + const.

(Bn/Bl)'=0, sin~o —g sin o, +const,

and again we take const = 0.
To describe the SSF state we take the minus

(7)

The equation obtained by Mills did not contain
the 2g. The integration constant is evaluated by
matching to the known infinite-medium solution.
Thus, in the AF phase, in which ]'&2&, with Bo/
8jt =0, sin~ =0, we have const = 0.

We next use the (lower energy) negative root of
(5) to evaluate q and e through order $2, insert
these into X, and thereby achieve an equation in
o, valid through order $, for g &2g:

2 8 o.'/Bl = (0 —2tl sin n) sln2n;

a'=2~+&'- &', t'=2&(&'-C).

This integrates to

»n'o. „=(1+ [1 —(5'/a')] sinh'(2g t)J- '.
This is now used, together with previous results,
to evaluate the energy difference 4& between the
SSF and the AF state. The sums from i=0 to ~
are replaced by integrations. We find, to order $,

4E = 2'(a —$).

This becomes negative at $ &('". Thus, when H
exceeds II, and surface magnons soften, the SSF
state is energetically favorable.

However, in a semi-infinite medium Eq. (2b)
for i=0 allows only ~p:0 or p. In an ideal finite
crystal with/ spins on the first (l =0) plane and

8 spins on the last plane there will occur, for &
)II„ two surface states, one converging inward
from the first plane and one diverging inward
from the last plane. The 3=0 spins will turn
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through almost a full 180', sending the region of
90' spin flop towards the middle of the crystal
where it stops after meeting the diverging state
coming from the la t plane. The energy will ap-
proach twice that given by (9). In a real crystal
the nature of the surfaces and of the interior will
determine the precise location of the spin-flop
region, and may also raise the critical field
above II, .

As b- a, according to (8) a,ll sinai»-1, and
hence the SSF region expands across the entire
crystal and a first-order phase transition takes
place into the SF phase. The condition g'= p' is

5'= 4'-=2K —K'

which marks the well-known AF-SF free energy
boundary, ' H, = 4H~. Above H„Eqs. (8) and (9)
no longer apply, since the integration constant
in (7) ceases to be zero.

Finally, we introduce a cos'o. anisotropy, char-
acterized by g'=Hz'/Hs, and also a Dzialoshinski-
Moriya, " interaction, characterized by it= Ho/Hs- .
After relating the canting angle to 0. , it is found
eventually that Eq. (6) and all the consequences
still hold, with, to first order in g and g',

a =2f+4r' —( —g, b = 2p'.

We note that the fields H, ' =2'(H„+H„') -Ho
and H,'= 2'(H„+2H„') -HD' are separated to
first order in (', as has been pointed out by
Jacobs et gl. '

We wish to thank David Jasnow and Jack Semu-
ra for helpful comments.
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The contribution of n-body forces to nuclear matter energy is summed in closed form
as a function of the nuclear density. It is seen that they provide an increasing amount of
binding as the density increases beyond ordinary nuclear density. The presence of corre-
lations suppresses this effect, but does not destroy it fully. The physics behind these phe-
nomena is discussed.

We summarize here results obtained by us for
the contribution of the sum of pionic many-body
forces (i.e. , intrinsic three-body forces+four-
body forces+. . . ) to the binding energy of nuclear
matter in the presence of internucleon correla-
tions. These higher many-body forces are cer-

tainly present in any real nuclear system, and
have not yet been investigated, let alone summed.
In addition, there are many interesting physical
effects which may be expected to be produced by
the sum of these forces, lending additional mo-
tivation for this work. The three-body force, on
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