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band centered on w, is “quenched” or prevented
from growing, and adjacent unstable noise modes
are limited in amplitude. Of greater interest is
the case when the launched wave is (a) small
enough that its amplitude grows exponentially be-
fore saturating, and (b) far enough above the
initial thermal noise elvel that the launched wave
always traps the beam. The exponentially grow-
ing noise is observed to be unaffected until the
launched wave has trapped the beam. Curve C is
the spectrum received at a point after the beam
has been trapped by a 114-MHz wave launched
where the beam enters the plasma and with an
amplitude approximately 10 dB above the ther-
mal noise level. Curve D is the spectrum re-
ceived at the same position but with no launched
wave.

The similarity between the calculation and the
experimental result is evident. The principal
failure of the calculation is that the observed
noise amplitude in the “quenched” region (| w,

- w,!<2 MHz) is not zero, but rather is limited
to the level it had grown to before trapping., This
amplitude limiting and the spatial evolution of
these limited waves have been previously calcu-
lated by regarding them as a slow modulation of
the launched wave’s amplitude and phase.” It is
likely that the failure is not the fault of the Van
der Pol model, but rather is a result of the con-
stant-driver approximation that facilitated the
calculation.

The principal success of the model is that, un-
like the modulational point of view, the Van der
Pol model clearly exhibits the frequency range
over which a launched wave affects the unstable

modes at neighboring frequencies.

In summary, the unstable modes on a low-den-
sity, cold-electron-beam-plasma system have
been treated as an ensemble of Van der Pol oscil-
lators. Qualitative agreement is found with the
observed amplitude limiting of unstable waves at
the neighboring frequencies of a launched wave
that has trapped the electron beam.
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Electrostatic Wave Reflection from a Plasma Density Gradient*
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Depavtment of Engineeving and Applied Science, Yale University, New Haven, Comnecticut 06520
(Received 11 June 1973)

We report measurements of the reflection coefficient R for electron plasma waves prop-
agating into a density gradient on a narrow column. Within experimental error, R is pro~
portional to exp(—9) when R is less than 0.25 and is equal to exp(~0.230) for R greater
than 0.25, where 6 is the inverse of the WKB parameter.

Considerable theoretical effort has recently
been applied to the problem of electrostatic plas-
ma-wave reflection from plasma density gradi-
ents. One motivation for this effort has been to
determine if reflections of convectively unstable

waves from the ends of a mirror machine affect
the stability of these devices.'™® The problem is
also relevant to considerations of the axial bound-
ary conditions for beam-plasma devices. In this
Letter we present measurements of the reflec-
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tion coefficients of small-amplitude electron plas-
ma waves on a narrow plasma column propagat-
ing into an adjustable axial density gradient. Re-
flections occur because of the spatial gradient in
axial wave number, and the waves are observed
to extinguish substantially at a plasma density
above the value corresponding to resonance. The
experimental results agree favorably with the cal-
culations of Aamodt and Book' in the weak-reflec-
tion limit.

The plasma was produced by a cyclotron-reso-
nance discharge in a TE, s cavity driven at power
levels of up to 200 W from a 2.45-GHz cw mag-
netron. The plasma diffused out of a 1-cm-diam
hole at the end of the cavity into a chamber 15
cm in diameter and 160 cm in length. The plas-
ma was confined radially by a uniform 800-G
magnetic field which rendered the electron dy-
namics one-dimensional. The radial density pro-
file was found to be Gaussian from ion saturation-
current measurements with a radially movable
Langmuir probe. The e-fold radius was about 1
cm, the central density approximately 2x10°
cm™, and the electron temperature about 5 eV.
The neutral gas pressure was 3X107° Torr of
argon, corresponding to an electron mean free
path much greater than the machine length; hence,
collisional damping was negligible. The plasma
was surrounded by two 7.6-cm-diam conducting
cylinders which served as a wave guide beyond
cutoff for transverse waves at the frequencies
used. The cylinders were separated by a 0.5-cm
axial gap located 60 cm from the transmitter, a
3-cm-diam wire loop connected to the inner con-
ductor of a rigid coaxial transmission line. The
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FIG. 1. Two representative axial density profiles.
The cylinder bias for curve a was — 70 V and for b was
—200 V. The maximum plasma densities were 2 x 10?
and 4x10% em™3, respectively. Dashed lines indicate
the slope where the density gradients used to define 6
are determined. Waves are launched from a transmit-
ter located at a position designated by the arrow.
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cylinder nearer the transmitter was grounded,
while the farther one was biased below ground
and terminated with a fine mesh grid. The bias
on the second cylinder produced a static electric
field which had an axial component that was uni-
form (within a few percent) over the diameter of
the plasma column. This electric field caused an
axial density gradient which could be adjusted by
varying the cylinder bias. Two such axial pro-
files, as determined from ion saturation-current
measurements with the movable axial probe, are
shown in Fig. 1.

Waves on the plasma column were launched at
the transmitter, and the amplitude of the wave
measured as a function of distance in the vicinity
of the gradient by means of an axial rf probe con-
nected to a sampling voltmeter. Figure 2 shows
recorder traces of received rf voltage versus
axial position for three representative frequen-
cies. These traces were taken using a density
profile intermediate between the two shown in
Fig., 1. The undulations in the traces have a pe-
riodicity which is twice the axial wavelength, as
measured from interferometer patterns, and rep-
resent standing waves. The reflection coefficient
was inferred from these traces by measuring the
standing-wave ratio. This procedure for measur-
ing the reflection coefficient can lead to inaccu-
racies due to the finite wave coherence length and
to variations in wave-probe coupling in the den-
sity gradient. However, there was no evidence
that these were a significant source of error in
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FIG. 2. Standing wave patterns. Note that the hor-
izontal scale is compressed by a factor of 2 for the 60-
MHz trace.
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this experiment. At high frequencies reflections
were weak and wave absorption was nearly com-
plete. Since no wave transmission was observed
in the region of minimal plasma density, one can
infer that a fraction 1 — R? of the wave energy has
been absorbed, presumably by Landau damping.

Aamodt and Book® have considered reflection
of electrostatic waves from weak plasma inho-
mogenities in the fluid approximation. They find
a reflection coefficient which is proportional to
exp| - 6(w)] for 6> 1, where 6(w)=[k"2(w)dk(w)/
dz]™*. Here k(w) is the local axial wave number
and is related to w through the local dispersion
relation when &>>1.

The dispersion relation for electron plasma
waves on a column with a Gaussian radial profile,
surrounded by a conducting cylinder with a di-
ameter large compared to the plasma, which is
immersed in a strong magnetic field may be writ-
ten as’

(1+1/ka)? =k "2\p"2Z" (w/kv,), )

where Z (w/kve) is the plasma dispersion func-
tion, Ap=v,/w, is the Debye length, w is the
wave frequency, v, is the electron thermal speed,
and « is the e-fold radius of the plasma. This
dispersion relation has been compared with nu-
merical solutions, a previous experiment,® and
the present experiment. In all cases excellent
confirmation of Eq. (1) was found in the range of
experimental interest. With no bias on the cyl-
inder we have determined the plasma density and
temperature from a least-squares fit of this re-
lation to the measured dispersion relation.

With a bias on the cylinder, reflections of waves
with phase velocities such that w/kv, >1 were
observed to originate near the position where the
density gradient was strongest. In this limit Eq.
(1) reduces to ka=w/[w,(z) - w], where w,(z) is
the plasma frequency; 6=w(adw,/dz) ' =aw,
where a is determined from measurements of
the radius and density gradient at the reflection
point. The radius was found to be independent of
bias over the range of density gradients consid-
ered, so as to rule out variations in k with a.

Figure 3 shows the results of our reflection-
coefficient measurements. Data are shown for
four different density gradients, obtained by ad-
justment of the cylinder bias, corresponding to
changes in the parameter a of over a factor of
2. The solid line is proportional to exp(- §) for
comparison with the Aamodt-Book prediction;
the amplitude was obtained by fitting to the data
at one point. The apparent dependence of the
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FIG. 3. Reflection coefficient. The triangles, dots,
squares, and inverted triangles correspond to & =4.6,
5.1, 8.0, and 11.5, respectively, in units of 107? sec™!.

measured reflection coefficient solely upon &(w)
suggests that the agreement between experiment
and theory is not peculiar to a specific set of ex-
perimental conditions. For strong reflections,
the dashed curve indicates an empirical fit of
exp(—0.2338). The break between strong and weak
reflections appears to be at a reflection coeffi-
cient of about 0.25. This corresponds to a WKB
parameter 86°1=0.17 and suggests a criterion for
application of the WKB approximation and a need
for another theory for smaller 6. There is no
evidence that nonlocal resonant-particle effects®
are important here, since the phase velocity of
the wave is so large that the bias on the cylinder
is insufficient to reflect resonant particles.

Berk et al.® have calculated a reflection coef-
ficient from the Vlasov equation, but their the-
oretical model assumes a perpendicular wave
number much greater than the axial one, a con-
dition not satisfied in the present experiment. It
may not be surprising, therefore, to note that we
have found very poor agreement between that the-
ory and this experiment.

It is a pleasure to acknowledge stimulating dis-
cussions with Dr. D. E, Baldwin, Dr. J. Fukali,
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Laser Target Model*

N. K. Winsor
Naval Reseavch Labovatory, Washington, D.C. 20375

D. A. Tidman
Science Applications Inc., Avlington, Vivginia
(Received 10 August 1973)

Results of a numerical simulation model are presented. Internally generated mega-
gauss magnetic fields are produced which tend to impede and deform the heat flow into
the target plasma beyond the laser-energy deposition layer. Two new instabilities are

also discussed.

A two-dimensional code has been developed for
the processes involved in the interaction of a fo-
cused laser pulse with a moderate—atomic-weight
target. A system of fluid equations including
self-generated magnetic fields'"® is solved in cy-
lindrical geometry by a second-order algorithm
using time-step-split flux-corrected transport.*
Interest in these plasmas derives from their po-
tential application as pulsed x-ray sources,® ion
sources, and possibly fusion. We shall present
representative results of numerical simulations,
demonstrate the importance of the self-generated
magnetic field, and draw attention to two insta-
bilities which may play a role in the physics of
the laser-target interaction.

Typically, we consider nanosecond (or subna-
nosecond) Nd pulses with intensities > 10 W /cm?
through the focal spot, which give rise to target
plasma temperatures above 1 keV. Thermal en-
ergy spreads from the laser focal region via elec
tron thermal conduction, fluid expansion, and
line and continuum emission from highly charged
ion states. Magnetic fields in the megagauss
range are generated internally in the plasma and
tend to inhibit thermal conduction in the direction
perpendicular to Bin regions where ©,7,>1. Ra-
diation pressure also plays a role for intensities
>10 W/cm?, but is not included in the present
code,
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The fluid equations used are
8N/81+V+ (NV)=0, (1)
NMav/dat+v-[P1+ 1B%/8r-BB/4r]=0, (2)
88/0t+v+(8V)=-PV-V+J-E'+ (6E-6F)

-

+Re+V'(Ke'VTe), 3)
P=Cp(§,N), T,=Cp(8,N), 4)
3§ - - 2., -
—_— =X ~-—T.
o7 v [YXB 4Wr (VXB§I
ck
- eNeVNeXVTe, (5)
where

E'=E+VxB/c=- (eN,) '"V(ZNET,) +T-J.  (6)

In these equations N is the total ion number den-
sity, (6}-_5- 6J) the laser-energy deposition term,
P=NET(1+Z) the total pressure, & the thermal
plus ionization energy. density; and R, the rate of
change of § due to radiation processes. The re-
sistivity T, and electron. thermal conductivity Ke,
are taken from the work of Braginskii! with the
B dependence of T and I‘{; included. The coronal
model® calculates the distribution of ion charge
states assuming equilibrium between electron
collisional ionization and radiative recombina-
tion. It provides P and T, as functions Cp and



