
VQLUME 3 1, NUMBER 17 PHYSICAL REVIEW LETTERS 22 OCTOBER 1973

Van der Pol Model for Unstable Waves on a Beam-Plasma System
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The unstable modes on a low-density, cold-electron-beam-plasma system are treated
as an ensemble of Van der Pol oscillators. This model predicts the observed amplitude
limiting of unstable waves at the neighboring frequencies of a launched wave that traps
the beam electrons.

The Van der Pol equation' describes an oscil-
lation with an amplitude that exhibits spontaneous
exponential growth followed by a stable saturation
level. It has been used to describe mode locking'
and frequency pulling' in Q machines, the multi-
mode operation of lasers, ' and suppression of the
ion sound instability in an arc discharge. Re-
cently, it has been applied to the effect of beam
modulation upon the standing waves on an elec-
tron-beam-produced plasma in which the end-
plate potential reflects the electron beam back
into itself. '

In this Letter we apply the Van der Pol model
to the unstable waves that grow when a low-den-
sity, cold electron beam is injected into a col-
lisionless plasma. We find qualitative agreement
with recently published results on the amplitude
limiting of unstable waves at the neighboring fre-
quencies of a launched wave that traps the elec-
tron beam. '

When a low-density, cold electron beam is in-
jected into a collisionless, Maxwellian plasma
along a strong magnetic field, unstable waves in
a narrow frequency band grow exponentially in
space, starting from the thermally generated
noise level. The growth continues at the rate
predicted by linear theory until the fastest-grow-
ing-wave's amplitude is sufficient to trap the
beam electrons. At that point the wave's growth
saturates, followed by a slow spatial amplitude
oscillation as the trapped beam electrons bounce
back and forth in the potential wells of the wave. '

, Any wave within the unstable frequency band will
exhibit this growth, saturation, and oscillation,
provided that its initial amplitude it sufficiently
large to allow that wave to trap the beam first.
Consequently, during its exponential growth and
initial saturation stage, each unstable eigenmode
may be regarded as a Van der Pol oscillator.

The spatially evolving wave amplitude p„(x) of
each unstable mode is modeled by the Van der
Pol equation:

dQ d
dx dx dx, —n — + y —(p') + k„'y = 0.

For the fastest-growing mode, ' for example, the
spatial linear growth rate is

n/2= (3"/2)k„(q'/2)" «k
and the saturation amplitude y(x-~) is

a, =-(4~/3y) l =mu'(& ) I/e,

where q' = —,(n, /n, )(u/v)', u is the beam velocity,
v is the plasma electron thermal velocity, k„ is
the wave number of the mode, n, /n, «1 is the
ratio of the beam to plasma density, and e/m is
the ratio of electron charge to mass.

We are interested in the case where an unstable
wave of wave number k, is launched on a beam-
plasma system with a sufficient amplitude to
grow and trap the beam before any thermally gen-
erated, unstable noise modes can influence the
beam dynamics significantly. If the launched
wave is the fastest-growing mode, its behavior
4 (x) sin(k, x) is well known from the single-wave
theory for a small, cold beam injected into a col-
lisionless plasma. ' The launched mode 4(x) will
act as a driving force that is detuned from reso-
nance by the amount k —k, . Thus, to determine
the effect of 4 (x) on the unstable modes at nearby
wave numbers, the behavior of these modes is
modeled by the driven Van der Pol equation with
4(x) sin(k, x) as the forcing function. To solve
this equation for cp„(x,), the spectrum at a chosen
point in space, we treat 4 (x) as a constant B
=4(x,), using the fact that (d4/dx)/4(x) «k, .
This corresponds to replacing the spatially grow-
ing and saturating launched wave by a constant-
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amplitude driver wave:

d (p dp, —n-- +y —(cp )+k„(p=Bk„sin(k,x). (2)
dX dX dX

Coupling among the equal-amplitude noise modes
is ignored as a small effect compared to the
driving force of the large, launched wave.

In the linear region [before the nonlinear term
yd(y')/dx becomes important], the solution of
Eq. (2) is the sum of (a) the solution to the homo-
geneous equation, i.e., the exponentially growing
mode at the natural oscillator wave number k„,
and (b) the particular solution, i.e., an oscilla-
tion at the driver wave number k, . Correspond-
ingly, in the linear region of the beam plasma in-
stability (before the beam is trapped), a launched
unstable wave has no effect on the exponentially
growing noise modes. '

Once the nonlinear term in Eq. (2) grows to
importance, the noise modes at k„and the driven
mode at k, no longer behave independently. Also,
the eigenmodes of the system no longer have the
simple form exp(ik„x). Instead, as is evident by
regarding each noise mode as a modulation of
the launched-wave's amplitude and phase, ' each
eigenmode in the nonlinear region is a combina-
tion of the two terms exp[i(k, + bk)x] and exp[i(k,
—bk)x]. Because the predictions of the Van der
Pol model are also symmetric about k„we con-
tinue to label each eigenmode by a single wave
number k„as in Eq. (2).

A standard method of treating Eq. (2) is to seek
a solution of the form'"

in comparing the calculation with experiments in
which y„(x,) is measured as a spectrum of fre-
quencies, in Eq. (4) we make the transformation
w„-—k„u, valid over the narrow spectrum of in-
terest.

Curve A of Fig. 1 shows the result of a calcula-
tion of a(co„) using Eq. (4) with a, (&u„) specified
as shown in curve B o.(. ~„)was assumed con-
stant (= 7.2&&10' rad/sec) as was (Bu„/a, n)'=0. 37.
The frequency range within which a = 0 was taken
to be I w, —~„l/2m &2 MHz.

An experiment has been described previously'
in which a 150-V, 200-p. A electron beam is in-
jected along a 180-Q magnetic field into a plasma
column with an effective electron density of 5
x10' cm '

(~~/u&, = 0.4) and an electron tempera-
ture of approximately 5 eV. When a wave at m,
is launched with sufficient amplitude to trap the
beam immediately, the spectrum of beam-grown
noise received downstream shows the same fea-
tures as the calculated curve A. A frequency

y(x) =a (x) sin(k„x) + b(x) sin(k, x+ 9), (3)

where d'a/dx' and d'b/dx' are negligible, (da/dx)/
a «k„, and (db/dx)/b «k, . It is found that for
driver amplitudes 8 sufficiently large, there
exists a range of wave numbers centered on k,
within which the oscillation at the natural wave
number k„ is "asynchronously quenched, ""i.e.,
within which a = 0. Elsewhere, the solution in-
volves the combination of oscillations at k, and
k„. Outside the quenched wave-number band,
Eqs. (2) and (3) lead to'

b~([1 —3(b/ao)']'+ [2(k„—k, )/a]'] = (Bk„/n)' (4)
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and a'+b'=a, ', where a and 5 are the resulting
amplitudes at the natural-oscillator wave number
gr„and the driving wave number k, respectively,
and a, = (4n/3y)'~' is the "free running" amplitude
at the natural wave number in the absence of a
driving force, as defined above. For convenience

FIG. 1, Curve A, calculation using Eq. (4) with pa-
rameters given in the text and at)(„) as shown in curve

Curve g, amplitude spectrum received at a posi-
tion after launched wave has trapped the electron beam.
Curve D, spectrum received at same position as C, no
launched wave.

1O40



VOLUME 31, NUMBER 17 PHYSlCAL RKVIEW LETTKRS 22 OcroBER i/73

band centered on ~, is "quenched" or prevented
from growing, and adjacent unstable noise modes
are limited in amplitude. Of greater interest is
the case when the launched wave is (a) small
enough that its amplitude grows exponentially be-
fore saturating, and (b) far enough above the
initial thermal noise elvel that the launched wave
always traps the beam. The exponentially grow-
ing noise is observed to be unaffected until the
launched wave has trapped the beam. Curve C is
the spectrum received at a point after the beam
has been trapped by a 114-MHz wave launched
where the beam enters the plasma and with an
amplitude approximately 10 dB above the ther-
mal noise IeveI. Curve D is the spectrum re-
ceived at the same position but with no launched
wave.

The similarity between the calculation and the
experimental result is evident. The principal
failure of the calculation is that the observed
noise amplitude in the "quenched" region (I &u,

—cu„l(2 MHz) is not zero, but rather is limited
to the level it had grown to before trapping. This
amplitude limiting and the spatial evolution of
these limited waves have been previously calcu-
lated by regarding them as a slow modulation of
the launched wave's amplitude and phase. ' It is
likely that the failure is not the fault of the Van
der Pol model, but rather is a result of the con-
stant-driver approximation that facilitated the
calculation.

The principal success of the model is that, un-
like the modulational point of view, the Van der
Pol model clearly exhibits the frequency range
over which a launched wave affects the unstable

modes at neighboring frequencies.
In summary, the unstable modes on a low-den-

sity, cold-electron-beam-plasma system have
been treated as an ensemble of Van der Pol oscil-
lators. Qualitative agreement is found with the
observed amplitude limiting of unstable waves at
the neighboring frequencies of a launched wave
that has trapped the electron beam.
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%e report Ineasurernents of the reflection coefficient A for electron plasma waves prop-
agating into a density gradient on a narrow column. Within experimental error, R is pro-
portional to exp{-~) when A is less than 0.25 and is equal to exp(-0.23~) for R greater
than 0.25, where ~ is the inverse of the WEB parameter.

Considerable theoretical effort has recently
been applied to the problem of electrostatic plas-
ma-wave reflection from plasma density gradi-
ents. One motivation for this effort has been to
determine if reflections of convectively unstable

waves from the ends of a mirror machine affect
the stability of these devices. ' ' The problem is
also relevant to considerations of the axial bound-
ary conditions for beam-plasma devices. In this
Letter we present measurements of the reflec-
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