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The Euclidean-Markov field, extensively used in constructive quantum field theory, is
shown to be the same as the lowest energy generalized stochastic process associated
with classical field theory through the procedure of Nelson's stochastic mechanics. As
a result, the underlying four-dimensional manifoM, on which the Markov field is defined,
can be considered as the physical space-time.

The constructive quantum field-theory pro-
gram, ' advanced by Glimm and Jaffe and their
followers, has been enriched by new powerful
methods in the last two years. These methods~'
rely on ideas from Euclidean field theory and use
probabilistic techniques and concepts. A central
role is played by the Euclidean-Markov field y(f),
introduced already in the pioneering studies of
Schwjnger, Nakano, and Symanzik, which be-
came a very powerful and effective tool after the
discovery by Nelson that its Markov property is
crucial for the reconstruction of the physical
theory from the Euclidean theory and for the
study of the Euclidean theory itself.

At present the situation seems to be the follow-
ing: A large class of boson quantum field theo-
ries, " satisfying Wightman axioms, "have a
mathematical image living in Euclidean space-
time (time imaginary) and described by general-
ized stochastic processes. " Through a recon-
struction theorem, ' the physical theory can be
derived from the Euclidean one.

To study and construct the Euclidean image for
interacting fields is easier because powerful
probabilistic techniques are available and be-
cause there is a deep analogy'~" between the Eu-
clidean field theory and classical statistical me-
chanics, which makes it possible to use the rig-
orous methods of modern statistical mechanics"
for the study of quantum field theory. Euclidean
methods have been especially useful for the study
of the infinite-volume limit of two-dimensional
boson theories, with important results by Glimm
and Spencer, "Nelson, "Simon and Griffiths, ""
Simon, " 2 and Albeverio and Ht(egh-Krohn. 2s"

The purpose of this note is to report about pro-
gress in the physical interpretation of the Eucli-
dean-Markov theory. These results are a by-
product of our study of a generalization of Nel-
son's stochastic mechanics"" to systems with
an infinite number of degrees of freedom, on
which we will report elsewhere. " Our main re-
sult is the following: The Euclidean-Markov
field coincides with the lowest energy generalized
stochastic process associated uith classical field
theory through the procedure of Nelson's stochas
tic mechanics. In the rest of this note we give a
proof of this statement in the case of free fields
and mention how to extend it to the interacting
case. We also deal with the relativistic proper-
ties of a transformation of the Euclidean-Markov
field.

From a conceptual point of view the most im-
portant consequence of our proposal of interpre-
tation is the, t the underlying four dimensional-
manifold on which the Marhov field is defined
can be considered as the physical space time. -
The fourth coordinate is the real physical time
and not the analytically continued imaginary time,
as in the current interpretation of Euclidean field
theory.

Nelson's stochastic mechanics can be consid-
ered as a method of quantization based on the
theory of Markov processes. Here we sketch
the main ideas in the simple case of a one-dimen-
sional system with Lagrangian

I, (q, q) = ,'ca/ ' —v(q). —

As a basic assumption, the classical configura-
tion variable q(t) must be interpreted as a. Mar-



VQLUME 31,NUMBER 16 PHYSICAL RKVIKW LKTTKRS 15 OCTOBER 1973

kov random process satisfying the stochastic dif-
ferential equation

dq(t) = h(q(t), t}dt+ dw(t),

where h{x,t) is a velocity field to be determined
and zv is a Brownian motion with expectations

E(dw(t)) = 0, E([dw(t)]') = Kdt/m.

It is also assumed that dw{t) does not depend on

q(s) for s «t

The dynamics of the process are described by
the Newton equation ma = —BV/8 q, where a is the
mean acceleration of the process, defined by a
= (DD*+D*D)q(t)/2. Here, D and D* are the
mean forward and backward derivatives defined
respectively by

DF(q{t),t}= lim h 'E,[E(q(t+ h), t+ h) —E(q(t), t)],

D*Z(q(t), t}= limh-'E, p(q(t), t}—Z(q(t —h), t —h)],

where Z, is the conditional expectation with re-
spect to q(t).

The process q(t) is completely described by
the probability density p(x, t) and the current ve-
locity v(x, t) defined through

E(S'[q(t), t]) = fZ(x, t)p(x, t) dx,

v(q(t), t}= (D+D +)q(t)/2.

These must satisfy the basic equations

ap/Bt = —e( pv)/sx,

which are consequences of the stochastic and dy-
namical assumptions made on q(t) It also tur. ns
out that

b(x, t) = v(x, t)+ (I/2m)8 inp/Sx.

The connection with usual quantum mechanics
is obtained by introducing the wave function

y(x, t) = p'"(x, t) exp[is(x, t)/8'],

where S is such that

v(x, t) = eS(x, t)/sx.

Then we can check that when p and v evolve ac-
cording to the basic equations, g evolves accord-
ing to the SchrOdinger equation and vice versa.
In particular, if we know the wave function, we
ean recover the associated stochastic process.

As an example we can consider the harmonic

oscillator
V(x) = m ~'x'/2,

with normalized ground-state wave function

tt {x,t) = (m(o/hz)'" exp(-m(ux'/2h - i~t/2).
The associated stochastic process q(t) has

p(x, t) =
i y(x, t)i'

= {m~/nm)'" exp(-m(ux /h),

v(x, t) = 0.
The basic stochastic differential equation is

dq(t) = —
cuq (t) dt + dw (t).

In this way we recognize that the process q(t)
is a Gaussian stochastic process characterized
by the expectations E(q(t)) =0 and E(q(t)q(t'))
= (h/2mar) exp(- &u lt —t'I), and therefore is the
Markov process of the Euclidean (i.e., imaginary-
time) image of the harmonic oscillator. 2' There-
fore we have our first result: The Euclidean-
Markov field associated with the harmonic oscil-
lator coincides with the process associated with
the ground state thxough Nelson's stochastic me-
chanics. We would like to stress the difference
in the two interpretations of the same process:
In the first interpretation the parameter t is
imaginary time, in the second one t is real (phys-
ical) time.

Consider now the Klein-Gordon equation for a
real classical field y(x): ( +X )y = 0 where
=8'/Bt' -6, and X is a parameter with dimen-
sions L, ' (we put c = I, but let h retain its dimen-
sions). The Hamiltonian is given by

H = 2 f[&cp/&t)'+ (Vy)'+X'y'] d'X.

Our objective is to find the stochastic process
associated with this classical system by general-
izing Nelson's stochastic mechanics to systems
with an infinite number of degrees of freedom.
In this simple case we discretize the system by
enclosing the field in a cubic box of side I., im-
posing periodic conditions at the boundary. The
system is then reduced to a collection of indepen-
dent harmonic oscillators, with canonical coor-
dinates 4,(t) and Hamiltonians

a„=-'.[i„'+(k'+X') @,„'],
where k -=k„k„k, and k; = 2mn;/L, n, are relative
integers. We then consider the ground state for
each oscillator and the associated stochastic pro-
cess, as in the first step (now m= I and ~'= k'
+X2). Through straightforward calculations,
passing to the limit I -~, we obtain that the
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ground-state stochastic process associated with
the classical Klein-Gordon equation is a Gaus-
sian generalized process y(x) with zero mea, n

and covariance given by

two-poInt funct1on 1s a 5 function. This Lorentz
covariance can be immediately transferred to the
Euclidean field in the form given above, because
the Euclidean field can be expressed as a func-
tion of the white noise through the formula

=-S(x-y),

where x,y, k are the vectors in Minkowski space-
time and k ~ (x —y) = k,(x, —y,) —k ~ (x —y) is the
Lorentz-invariant scalar product. Since the
change of variable po- -)zo does not modify the
covariance of S, we recognize immediately that
the process we have constructed is nothing but
the free Euclidean-Markov proc ess,"with mass
X in a system in which @=1.

We stress the important fact that the label x of
the process is the physical space-time. In this
way our main statement is proved for the free-
field case.

For the interacting case it is convenient to con-
sider firstly the anharmonic oscillator [the &(y),
theory], whose quantum-mechanical properties
are well known. ' Starting from the quantum theo-
ry we can construct the stochastic process as-
sociated with the ground state according to sto-
chastic mechanics and compare it with the Mar-
kov process of the Euclidean theory [Euclidean
&(y), theory], which is also well known (see Sect.
ll of Ref. 16). These considerations extend also
to the P(y), (space-cutoff) theory as will be re-
ported elsewhere. " Qur last comment is about
the relativistic transformation properties of the
smeared field y(f) = fy(x)f(x) d'x, with covari-
ance following from S(x- y). Space-time transla-
tions can be trivially realized. To represent the
Lorentz transformations x- x'=Ax, where x and
x' are coordinates of the same world point in two
frames Q and Q', it is necessary to impose the
following transformation for the test function f:
f-f', with f(k)(k,'+&+X') "'=f'(k')(k, "+k"
+X') '", where f are Fourier transforms and
O'=A&. Then the field y, as seen in Q, and the
field y', as seen in Q', have the same covari-
ance (this statement is the content of rela, tivistic
invariance under Lorentz transformations) if
they are related by qr'(f') =y(f).M The following
remark, which can also be extended to the inter-
acting case, will help to clarify the Lorentz co-
variance. The white noise A. (x), x& R', defined
as a generalized Gaussian random process with
expectations E(A (x)) = 0 and EQ(x)g(y)) = 5(x —y),
enjoys manifest Lorentz covariance, because its

where 4 is the four-dimensional Laplacian.
In conclusion it seems possible to give an in-

terpretation of the Euclidean-Markov field in
the framework of the physical space-time and
to achieve a very simple merging of stochastic
mechanics for systems with an infinite number
of degrees of freedom with the Euclidean-Mar-
kov theory.
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A new search for the decay &L, —p p has been performed at the Brookhaven National
Laboratory alternating-gradient synchrotron. We used the experimental technique em-
ployed by Carithers et at. , with some modifications to suppress the background further
and eliminate possible systematic effects. The analysis of this experiment yields three
events satisfying criteria for this decay mode.

The experimental observation by Carithers
et aE. of six events satisfying criteria for the de-
cay K~'- p'p. gives a va1ue for the branching
ratio I'(Ki' —p, +ti )/I"(Ki' —all) = 14+'7s&& 10 s (90%
confidence-level errors). ' This is in contradic-
tion with the result from Clark et a/. , in which
no K~'- p. 'p, candidates were found, thus placing
an upper limit for this branching ratio of 3.3~10 '
at the 90lo confidence level. ' In this I etter we
report the final results of a new search for the
decay K~'- p, +p. .

Three modifications were made to the spec-
trometer used by the original Columbia/CERN/
New York University experiment shown in Fig. 1
of Ref. 1 [which we will refer to as K»(I)j:

(1) A new high-resolution horizontal hodoscope
has been added to the system in order to improve

background rejection in the identification of muons.
This array of 23 scintillator elements, each 2—,

'
in. wide and 84 in. long, is mounted behind a 2-
in. -thick steel plate and pl.aced downstream from
the other muon detectors. The overall size of
the hodoscope is sufficient to detect most Ki'
—p. 'p, decays which penetrate the hadron absorb-
er. The efficiency of each of the three muon hodo-
scope planes (horizontal, vertical, and new hor-
izontal) was found to be 97/o from a carefully se-
lected sample of K» decays.

(2) The spectrometer magnet was operated at
240 MeV/c transverse momentum (P~). This was
chosen to be different from Pi= 210.6 MeV/c used
in the K»(I) experiment for the following reasons.
(a) Increased bending power tends to compress
the p. p,

" invariant-mass spectrum due to the
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