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Solidification of Neutron Matter
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A t-matrix calculation of the ground-state energy of cold neutron matter has been per-
formed and it is shown that neutron matter solidifies at a density of the order of 1.6
&& 10~5 g/cm3, thus implying the existence of a solid core inside heavy neutron stars.

There has been a growing interest recently in
the existence of a solid core inside neutron stars,
a possibility which appears to be observationally
supported by repeated speedups recorded in the
Vela pulsar. ' There have been four reported cal-
culations to establish whether a system of bary-
ons could solidify in the range of densities of in-
terest in neutron stars, i.e. , 5~10 ~ p ~ 10
g/cm'.

Anderson and Palmer, ' on the basis of de Boer's
law of corresponding states, first indicated that
solidification would indeed occur at p = 5X 10'
g/cms, a result that was not significantly altered
by a refined version by Clark and Chao. ' Then
Nosanow and Parish, using a Monte Carlo tech-
nique analogous to the one used for solid Hes,
found the onset of a neutron solid state at p= 3
&& 10'4 g/cms. Lastly Pandharipande' performed

a variational computation that indicates that neu-
trons do not solidify until 3.34&& 10" g/cm~.

In this paper we report the results of a t-ma-
trix computation that indicates the onset of the
solid phase at p-1.6x10" g/cms. ' Such an ap-
proach has been successfully employed in the
description of solid Hes. ' Our earlier attempts
to use variational methods as in Refs. 3 and 4

fell short of a satisfactory treatment of the an-
gular-momentum- and spin-dependent character
of nuclear forces. Up to second order, the en-

ergy per particle is known to be'

E/N= ,'h&u+ —,P,—,J 4;,.V;,P;, dr;dr, ,

where 4;, is the two-body uncorrelated wave func-
tion which is the product of two Gaussian func-
tions centered at the lattice sites R; and R, , re-
spectively, ' i.e. ,

n"' ~3/2
4';, = q (i)P(j) =4(R)cp(r) =,~, exp[ —o."(R—Z)'] „,exp[ ——,'a'(r —6)'], (2)

with (5, 2Z) = R;+ R, and o. = (m(u/K)'~; g;, is the correlated two-body wave function that is taken to sat-
isfy the Bethe-Goldstone equation, '

[T ( i) + T (j ) + U(i ) + U(j) + V, ,]g;, = e g;, ,

where the self-consistent one-body potentials U are given. by

The frequency of oscillation &u is obtained by solving the set of equations (1)-(4) simultaneously. After
separating center of mass and relative coordinates, Eq. (3) reduces to [g;, = C (R)g(r)],

[- (5 /m)V„+ 4m&v (r- 6)'+ V(r)] P(r) = (e —sk&u)g(r). (5)

The wave function tfr has to be taken dependent upon Ms, the projection of the total spin S, since the en-
ergy depends upon the spin configuration used in the crystal structure under consideration. We will
in fact specify the lowest-energy configuration by arranging the spins in a specific order. It is obvi-
ous that a configuration with all spins parallel will yield too much energy because of the presence of
SP, which is always repulsive at any distance. (We have used the Reid potential. ) The general wave
function is therefore written as [see Eq. (6.3) of Bethe, Brandow, and Petschek']

g "s(r) =P, „i'[4m(2l+1)]'~'(lOSMs~ JMz)g, ~~s(r)Y, ~"s(A)

After considering the three possibilities (a) S=O, Ms =0, (b) S=1, Ms =0, (c) S=l, Ms =1, and sub-
situting the three resulting wave functions in Eq. (5), we get three sets of coupled differential equa-

(6)
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tions. The coupling of various waves (within a prescribed spin configuration) is due to the term r
=x6 cosH that couples odd and even waves. We had originally worked out the problem including waves
up to l =2.' Following a remark by Bethe, we have extended the computation up to l =4 and subsequent-
ly up to l =6. The l =4 gave lower energy than the l =2 case, whereas we found little difference be-
tween l = 4 and 3 = 6.

Since for triplet states i/ —li «J» /+1, the S =1 (Mz =0, 1) states give rise respectively to 13 and
18 equations with l & 6. Even though the energy was sensibly unaltered from say l =4, 5, we extended
the triplet waves to include l =7. On the other hand, the singlet states, for which l= J, can be extend-
ed up to l =25 without any problem. This was also done with hardly any change in the final result. As
for the potentials, we used for higher /'s an approximation suggested to us by Bethe': V(/=even)
= V('D, ), V(/=odd) = V,(P, —'F, ), /) 3. The choice V(/)3) =0 was also employed. For both cases the
results were essentially unaltered. Even though we cannot claim that I,„ taken here is the right one,
we feel, however, that a reasonable convergence has been achieved.

The three sets of equations for the cases (a), (b), and (c) contain respectively 7, 13, and 18 coupled
differential equations each, for a total of 38 partial waves ('S, ~ ~ ~ '/„'S, ~ ~ ~ 'I„; ).

(a) S=0, M, =0. In this ca.se, the inclusion of /=6 waves gives rise to 7 coupled equations that are
written in the following concise form:

(/=0, . . . , 6) and /= J.
(b) S=l, M, =O.

—1'"a'd
G, + (E —U, )G, + —— [/gq (/+1010' J'0)'G„, —(/+1)gq (/ —1010'J"0) G, , ]=0

(/=0, . . . , 6) and J takes the values compatible with i/ —Ii - J- /+1, and likewise the sum over J' and
J" follows the rule f/f «J'» /+2, f/ —2/»J" /.

(c) S=l, M, =1.

-S '" a'xd
H, +(E —U, )H, + — [/P~ (/+1 Olli J1)'H„, —(/+1)Q~ (/ —1011'J"1)~H, , ]=0.

The notation is as follows:

U,
~ = ~ a4x'+ (mr, ~/I')V, +/(/+1)/x', E, , G, ,H, =rg,

E = (mro'/I )[e —~Iz —(I'/4m)n 6' —2U, ], a = o.'x„x= x/ro, d = 6/r„

p = my/r, '
(y = 4, fcc; y = 2, bcc).

Once the P's are known for each spin and an-
gular-momentum component, the energy can
readily be computed by using Eq. (1). The wave
function g for the 'So state is shown in Fig. 1

along with the unperturbed wave function y and
the correlation function f(r) =g/p. The computa, —

tion of the wound parameter ~ turns out to be
& 0.25.

Even though a bcc structure yields lower ener-
gy than fcc for the first shell, the second and
third shells both have spins ~~ for bcc and ~ i for
fcc. The fourth shell again favors bcc, but the
fifth and sixth favor favor fcc. The situation re-
peats until one finds a net gain with an fcc struc-
ture of about 30 MeV at p = 3.34&&10" g/cm'.

In the range 1.6&& 10"» p» 5x 10" g/cm~ the

spread of the single-particle wave function turns
out to be 0.238& o. ' & 0.333 F, whereas the first-
neighbor distance is 0.779- 5- 1. .139 F. The plot
of E/N versus p for fluidg and solid configura-
tions is displayed in Fig. 2, where we include
the results of the early computation with only
E =0, ~, 2. It is concluded that from p =1.6~10"
g/cm~ the solidlike arrangement gives a lower
energy per particle than the fluid. However,
since the fluid energy has been computed varia-
tionally, it represents an upper limit and there-
fore the present computation can only be taken
to indicate that there is a, good chance for a solid
phase at high density, but not a definite proof.

A remark about higher-order terms is appro-
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FIG. &. Wave function g for the singlet state So along
with the correlation function f and the unperturbed wave
function q for th'e same state at p =3.34x 10'~ g/cm3.
The nearest-neighbour distance ~ =0.891 F.
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FIG. 2. Ground-state energy per particle versus the

density for a neutron fcc lattice and neutron fluid. Re-
sults of earlier computation with l =2 are displayed for
comparison.

priate. In systems that are translationally in-
variant the unperturbed wave functions are usu-
ally taken to be plane waves. Solid hydrogen has
recently been studied by Ostgaard, "and Eq. (1)
was found to work surprisingly well. This is
partly because instead of plane-wave single-par-
ticle wave functions, the choice appropriate to a
translationally invariant system, one employs
Gaussian wave functions, which already incor-
porate some higher-order correlations. Further-
more, the wound parameter a, whose size mea-

sures the importance of three-body correlations,
turns out to be only about 0.2.

The method outlined in this paper has been ap-
plied to He' and solid hydrogen, and the results
are in satisfactory agreement with experimental
data "

Once the energy per particle E/N is known, it
is a simple matter to compute the energy density
and the pressure. We have fitted the pressure
P versus the mass-energy density & with a poly-
nomial expression in the density range 1.6x10"(p( 6&&10" g/cma:

P36 = 0.205 79 —0.271 60&36+ 0.181 809&3, —0.008 803 7&36

where

Pa6=P&&10 "dyne/cm',

e, = e x 10 ' erg/cm'.

For densities lower than 1.6x 10" g/cm, our P
and & join smoothly the equation of state given

by Pandharipande. ' We integrated the general
relativistic equations of hydrostatic equilibrium
and found the mass upper limit for a stable neu-
tron star to be 1.39Mo at p = 4x 10" g/cm~.

Finally, a comparison with the previous com-
putations '' is in order. In the Monte Carlo com-
putation, the correlation function was chosen to
be of the form f = exp(- b/r") with n = 4, which

appears to be rather different from the one ob-
tained either by us or by Pandharipande. More-
over, the nucleon-nucleon interaction was dras-
tically simplified in order to make the computa-
tion managable. Such a simplification may be
justifiable at low density, but it surely becomes

questionable as the density increases. The rath-
er low solidification density is probably a result
of the choice of the correlation function.

In Ref. 5, the variational computation was sup-
plemented by Eq. (5) for g. The important r ~ 5

term that couples all the waves was averaged and
no angular-momentum expansion of the wave
function was performed. In our approach one
major concern was the state-dependent correla-
tion function which was exactly treated. In the
opinion of the present authors the healing condi-
tions used in Ref. 5 are too restrictive (the f
has no overshoot). In particular, an f restricted
to be ( 1 for any r does not seem to be able to
satisfy the normalization condition JPcpd r = Jcp'f
xd'~ =1, if y is taken to be a Gaussian wave func-
tion normalized to unity.

Finally, there is an astrophysical piece of evi-
dence to support the idea of a solid core inside
heavy neutron stars. This relates to the fact that
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the starquake theory of pulsar speed-ups, which
can plausibly account for the behavior of the Crab
pulsar, can also explain the observed features
of the Vela pulsar only if it is assumed that the
Vela possesses a solid core. Pines, Shaham,
and Ruderman' have argued that the solid eox'e

has sufficient elastic energy to power the star-
quakes of the magnitude and frequency in the Vela
pulsar.
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We report the results of a high-statistics scintillation-counter electronics experiment
measuring the muon polarization in the decay &I -n. p, +v& by the method of spin preces-
sion. We present results for the real and the imaginary parts of the form-factor ratio.

CP noninvaxiance is well established in the neu-
tral-kaon system. Time- reversal noninvax'ianc e
is implied, but has never been directly observed. '
In the K~0 c.m. system a component of muon po-
larization normal to the decay plane (&r„~ P„x P&)
in I|.~'- v p. 'v& is odd under time reversal T and
forbidden by T invariance. ' In this Letter we re-
port the results of an attempt to observe T non-
invariance dixectly by measurement of muon po-
larization in the decay K~0 —v p. +p&.

Briefly, our experimental technique is to re-
cord in plastic scintillation counters a prompt

coincidence signifying r and p' from in-flight
K~'-v p. 'v& decay, degrade the muon to rest,
and record a delayed coincidence signifying the
e' preferentially emitted along the polarization
vector of p.

' in the decay p, '-e'v, P„. To mea-
sure the muon polarization we have used the
method of spin precession, recording the time
distribution of the e' from p,

' precessing in a 60-
6 magnetic field (1.8 turns per p.

' lifetime) su-
perimposed on the p.

'
stopping volume. The

phase and magnitude of the observed sinusoidal
modulation of the p,

' decay intensity are directly
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