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it follows that the construction given above rep-
resents a solution to the problem posed in this
Letter.

The necessary and sufficient nature of the con-
dition, Eq. (13), also allows one to correct, in
a simple way, wave-function models4 of the half-
off-shell T matrix for the fact that these wave
functions may not be menbers of a complete or-
thogonal set. An additional adjustable parameter
in ~4(E, ) would allow one to satisfy Eq. (13) with

~4(E, )) taken to be the solution of a known po-
tential. ' We have seen that this is both sufficient
and necessary for ~C'(E, )) to be a member of a
complete orthonor mal set.

A more detailed discussion of such construc-
tions and their consequences off the energy shell
is in preparation.
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The Griffiths-Hurst-Sherman inequalities and the Lee-Yang zero theorem in the theory
of Ising ferromagnets are shown to hold in a two-dimensional self-coupled Bose quan-
tume field theory with interaction:ap +Op —pp:. Applications include the continuity of
the infinite-volume "magnetization, " (p(0)), away from @=0. Our results should carry
over to three or four dimensions once it is known how to control the ultraviolet diver-
gences in these theories.

The past year has seen remarkable progress' in constructuve quantum field theory because of the
exploitation of Euclidean techniques advocated by Nelson. ' One of several advantages of the Euclidean
approach is that the Euclidean Bose field is commutative, so that time ordering is unnecessary in the
Gell-Mann-Low formula which becomes'

Equation (1) has a. remarkable similarity to the formula for correlation functions in statistical me-
chanics and suggests that one attempt to carry over the techniques of rigorous statistical mechanics4
to constructive quantum field theory. Such a program has been begun by Guerra, Rosen, and Simon'
with further developments by Nelson' and Simon. ' In this note, we wish to announce some further re-
sults within this program.
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We feel that the techniques we present here (combined with those in Ref. 5) represent a new tool in
understanding nontrivial quantum field theories, and, in particular, in studying the validity of the
Goldstone picture of dynamical instability. By its very nature, dynamical instability is a strong-cou-
pling phenomenon, and px evious attempts at studying it have been hampered by relying basically on a
perturbative approach. The recent techniques of Glimm, Spencer, Jaffe, and Dimoek' are also re-
stricted to a small coupling constant, and thus, presumably are only applicable away from the region
of dynamical instability. On the other hand, statistical-mechanical techniques are not limited to small
coupling. Our main applications (theorems 3-6 below) prove that certain quantities are continuous in
various coupling constants precisely in regions where the Goldstone picture "predicts" continuity.

In Ref. 5, correlation inequalities of Griffiths-Kelly-Sherman (GKS) and Fortuin-Kastelyn-Ginibre
(FKG)' type were proven for the P(y), field theory. These inequalities are known to hold for general
kinds of ferromagnets: with many-body interactions, with arbitrary spins, and with arbitrary single-
spin distributions. Our results, on the other hand, are field-theory analogs of certain theorems which
have only been proven dA"e«lg" for spin- —,

' Ising ferromegnetics with pair intexactions, namely the
zero theorem of Lee and Yang" and the correlation inequalities of Griffiths-Hurst-Sherman (GHS)
type. " We are only able to treat P(y), interactions with P of the form P(X) = aX4+bX' —pX. Our main
results are as follows:

Theorem 1 (GIfS inequality). —Let ( ) be a P(q), expectation value" for P(X) = aX'+ bX' —~ with p,
~ 0, Then

(V(x)V(3 M~)&+ 2(V(~)) &V(3)& &q(z)) —&V(A'(y)) &q(z)& —
&9 (~)9 (~)) ( (3)& —&V(~)) &V(y)P(~)) - o

for all x, y, z.
Theorem 2 (I,ee-Pang theorem). Let A —be a finite

plex p, define

E~( p) = (exp(- f~[a:y'(x): + 5:q '(x): —py(x)] dx j),.
Then F~( p) x 0 if Re p v 0.

The proofs of these theorems (which will be de-
scribed in full elsewhere'') is by a double-ap-
proximation procedure. First, we follow Ref. 5
and approximate the P(y), field theory by a near-
est-neighbor Ising ferromagnet with continuous
spins having a single-spin distribution of the
form C exp(- o.s'+ ps'+ps) [if P(X) = aX'+ bx'
—pX]. We then" approximate each of the con-
tinuous spina by a ferromagnetic array of spin-
~ Ising spins.

These theorems have a variety of applications"
modeled after those in statistical mechanics.
Lei ( ) g ~ denote the infinite-volume state for
the aX'+ bX' —pX field theory. Since it is trans-
lation invariant, (p(x)), ~ &

is a number M(a, b, p)
independent of x. In Ref. 5 it is shown that M is
non-negative lf p. & 0. By tradltlon, dynamical
instability (and, in particular, spontaneous brok-
en symmetry) is supposed to be accompanied by a
diseontinulty in M as a function of p,. The follow-
ing can be proven using theorem I,

Th.eorem 3.—Fix a &0, b real. In the region
p&0, M(a, b, p) is a strictly positive, strictly
monotonic, concave, continuous function of p.

Theorem I also implies the following:
Theorem 4.—Fix a&0, b real. The mass gap

for the;ay'+by —p,y: theoxy is a monotonic non-

region in R'. Fix a&0 and b real. For any com-

decreasing function of p, in the region p, &0.
Theorem 4 holds for either the spatially eut

off theories or for infinite-volume theories ar-
rived at by some fixed-limit procedure. The
following is an application of theorem 2:

Theorem 5.—Let n„(a,b, p) be the energy per
unit volume" fox the:ay'+ by' —p.y: theory. Fix
a and b Then u. (a, b, p) is real analytic in the
region p. &0, possesses an analytic continuation
into the region Rep &0, and for any p. &0

do. „(a, 6, p)/d p = M(a, 0, g ).

All thx ee theorems suggest that dynamical in-
stability can only occur at p, =0. Since aX4+bX~
—pX has a unique minimum if p, w0, this fits in
Dle ely with the Goldstone picture of dyDami eal
instability.

We are also able, by following some Ising-
model arguments of I ebowitz, '9 to prove theo-
rem 6.

Theorem 6.—If the:ay +by: theory in infinite
volume has a mass gap, then M(a, 5, p) is contin-
uous in p, at p, =0 and, in particular,

lim M(a, b, p.) =0.
/~0

It ls our hope and expectatlon that theorems I
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and 2 will become as powerful a tool in the study

of field theories with p~0 as they are in the the-
ory of the Ising model' at nonzero magnetic field.
In particular, partly motivated by Ref. 20, one of
us has proven" the following:

Theorem 7.—The infinite-volume":ay'+ by'
—p.y: field theory (a&0, p&0) possesses a unique

vacuum.
Combined with results from Ref. 6, this con-

cludes the proof of the Wightman axioms for a
class of strongly coupled theories.

Finally, let us say a word about the limitations
to two dimensions. In the lattice approximation,
theorems 1 and 2 hold in any number of dimen-
sions. In two (space-time) dimensions we can
take the lattice spacing 5 to zero without any re-
normalizations. In three or four dimensions,
nontrivial ultraviolet divirgences occur and so
renormalizations are needed, and we do not yet
know how to control these theories as 6 -0. How-

ever, if perturbation theory is an accurate guide
for an:ay'+ by' —p, y: theory, the counter terms
will only be quartic, and so we expect that our
theorems will remain valid.
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