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FIG. 3. Optical double resonance curves with signals
from the 52F;, and 5°Fy/, levels in Cs'33. The center
of gravity (C.G.) for the F states and the position of
the D resonance also occurring in these experiments
are indicated. Sampling time for each of the curves is
about 1 h.

constants are estimated:

la(5%F,,, Cs'*)|<1.0 MHz
and
la(5%F,,, Cs'*)|<0.7 MHz.

Measurements of the hyperfine structure of
other highly excited alkali states and experiments

for determining the signs of the coupling con-
stants in the states studied in this work are in
progress.
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Determination of the He*-He* Repulsive Potential up to 0.14 eV by Inversion
of High-Resolution Total— Cross-Section Measurements

R. Feltgen, H. Pauly, F. Torello,* and H. Vehmeyer
Max -Planck -Institut filv Stromungsfovschung, Gottingen, Germany
(Received 16 February 1973)

High-resolution measurements of the He‘-~He’ total scattering cross section are pre-
sented for reduced collision energies between 0.2 and 200 meV. Clear evidence for the
Ramsauer-Townsend effect is observed and thirteen backward glory extrema are re-
solved. From these extrema we derive the energy dependence of the s phase shift. Ap-
plying the semiclassical inversion method proposed by Miller we then compute the repul-

sive potential up to 0.14 eV.

Knowledge of the interaction between two He*
atoms in the ground state has been greatly in-
creased in recent years. Relative differential
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scattering cross-section measurements at fixed
energies! "% give sufficient information on the in-
teraction potential only at energies which are not
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FIG. 1. Measured and calculated total effective scattering cross section Qs for Hel~He? as a function of the pri-
mary beam velocity vy (velocity resolution 6%). Scattering chamber temperature is 1.57°K. The theoretical curve
is calculated from the potential explained in the text. N is the extrema index of Ref. 4.

too small.® However, total scattering cross-sec-
tion measurements give this information in the
entire energy range. At reduced energies K> 2

a powerful method for determining the repulsive
region of the potential is to measure the back-
ward glories*:® of the total cross section. Previ-
ous measurements of this type®™® can determine
the repulsive potential in only a small interval
because of the limited energy range. In the low-
energy region (including K < 2) total scattering
cross-section measurements are also used to de-
rive the properties of the potential in the well.?
At small energies (K<0.5) the He*-He* system
satisfies the conditions of an atomic Ramsauer-
Townsend effect® ''>; The total cross section
shows a deep minimum at one particular velocity
associated with the passage of the s-phase shift
through zero, while higher phase shifts are also
small. An experimental resolution of this effect
would give valuable information on the He*-He*
potential well.

We report here measurements of the He*-He*
total effective scattering cross section with high
energy resolution in the energy regions discussed
above (0.2 <K <200). Except for several modifi-
cations, the apparatus used is that described
previously.'?'® The He* primary beam is veloci-
ty selected (effective resolution half-width 6%)
and then scattered by He® in a scattering cham-
ber maintained at 1.57°K by a pumped He* bath. ’

Additional details will be given in a forthcoming
paper.

The experimental results are shown in Fig. 1.
Using a symmetric selector'* the velocities v,
are determined to within 0.3%. The experimen-
tal @.sr values are obtained as relative cross
section measurements. The standard deviation
of each measurement is generally smaller than
1% unless otherwise indicated in Fig. 1. An ab-
solute cross section scale is established by com-
parison with theoretical calculations below.

As can be seen, all thirteen backward glory ex-
trema in the measured energy range are clearly
resolved. The oscillations are labeled with the
extrema index N of Ref. 4. At low energies the
Ramsauer-Townsend effect is visible as a pla-
teau. The minimum of the cross section in this
region cannot be resolved with the present exper-
imental technique. It may be possible to obtain
such a resolution with a scattering chamber
cooled by a He® cryostat or with a secondary
beam crossing the primary beam at the proper
angle.'® We intend to use the second method in
future measurements.

The measured backward glory extrema in Fig.
1 lead directly to the repulsive potential using
the semiclassical inversion method proposed by
Miller.'®*'? In this method the semiclassical in-
tegral representation of the s phase shift is trans-
formed to yield the classical turning point 7 (E):

No( E)

7ol = (20) 7 = 2/m /2y of [, ail - ) 2 [ LE - B, (1)

~1/2
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where E is the relative collision energy, % is the
relative wave number, pu the reduced mass, E(n)
is the inverse function of the WKB bound-state
eigenvalue function n(E), and E(7,) is the inverse
function of the energy dependence of the s phase
shift 9,(E). From v,(E) we obtain the potential V
at 7, via the turning-point condition

V(r,) =E —k*8ur,?) ™. (2)

To obtain 7, we must evaluate the three terms
in Eq. (1). The first term is straightforward; it
is due to the centrifugal part of the effective po-
tential and occurs also for angular momentum !/
=0 since in our case the effective potential must
be written in the I +3 version (see footnote 5 in
Ref. 17). The second term requires an assumed
potential well. For the third term, which in our
case gives the dominant contribution, the s phase
shift 7,(E) must be known in the semiclassical
approximation, since the Miller formula is only
valid here. For energies E =E, (E, backward
glory minimum energy) 7,(E) can be calculated
semiclassically at the backward glory extrema
positions E:

no(E) =[N(E) - 17 = 30(E), (3)

N being the extrema index.? In our case the func-
tion ¢ (E) is a small correction term which de-
pends so weakly on the shape of the repulsive po-
tential that the knowledge of the final inverted po-
tential is not necessary for evaluating Eq. (3).
At E<E,, 1,(E) must be computed semiclassical-
ly for an assumed potential.

Therefore, in order to compute a repulsive po-
tential for values V >V, [V, corresponding to E
=E, in Eq. (2)] by inversion of a measured 7,(E)

5[ EI T T T T T T T T m
Vo ¢ — (E) calculated for the starting part
[er% o v, (E) derived from the measured N(E) spectrum
-5} ° . 4
-10}- o ~
o
-15+ ° N
-20f . |
N=-05 -1. -15 -2 -25 -3 -35 -4 -45-5 -55-6.-65
-25¢ 4
1 1 1 L 1 1 1 1 1 I | L -
0 5 10 20 50 100 200

E[meV]

FIG. 2. The s phase shift function 14(E) used for the
inversion.
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curve for E =2 E,, we need in addition an assumed
potential for the region V<V,; we call this the
starting part. The inverted repulsive part togeth-
er with the starting part then represents the new
derived potential.

In a preliminary analysis we use the “best-fit”
potential proposed by Cantini ef al.” for the start-
ing part because it fits the data well in Fig. 1 up
to E ~30 meV.*® The repulsive part up to 0.14
eV is then inverted using the measured N(E)
spectrum.

Figure 2 shows the phase shifts 7,(E) used in
Eq. (1). The resulting repulsive potential V(7)
is presented in Fig. 3. As expected the repulsive
part is “softer” than the Lennard-Jones (11, 6)
shape of Ref. 7 for V>30 meV. The potential
values agree well with those reported previous-
1y.3.8.19'21

To check the reliability of the applied inversion
procedure we have computed the total effective
scattering cross section using the derived poten-
tail. Agreement is generally good as can be seen
in Fig. 1. However, small deviations do occur.??
We believe that the starting part is more respon-
sible for these deviations than the inverted part
for the following reason. Although the inverted
values are influenced by the chosen starting part
[for the values in Fig. 3 the second term in Eq.
(1) contributes 26% to the 7,(E) value at E =17
meV and 13% at E =142 meV], identical results
are obtained with two further starting parts
(ESMSV-1I% and mLJ-D?®), i.e., the inverted re-
sults remain unaffected for starting parts which
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FIG. 3. The upper repulsive part of the He’~He! po-
tential determined by inversion. Exponential fit: V
=0.329 expl15.01(1 =7/2.96 A)] meV.
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are not too different. Thus we believe that the
inverted part is quite well established.
Accordingly the main error for »(V) in Fig. 3
is due to the error in the N(E) points where AE/
E~2%. This gives Av/r~1% from Eq. (1).
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Electron Loss in High-Energy Oxygen-Ion Collisions™
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The 90° electron spectra from oxygen-ion single collisions with Ar have been measured
at energies of 17 to 41 MeV and charge states of 3+ to 8+. A broad peak in the spectra
is observed and identified as electrons lost from the incident ion. A simple model of the
electron-loss process is described which supports the identification.

Fast heavy-ion-atom collisions result in the
production of copious amounts of electrons. The
energy spectra of the emitted electrons have been
studied in detail for incident heavy-ion energies
below 500 keV., Recent reviews of these mea-
surements have been given by Ogurtsov' and by
Rudd and Macek.? At observation angles of 90°
or greater, the continuous electron spectra are
found to be monotonic functions of the electron
energy, decreasing nearly exponentially with in-
creasing electron energy. Superimposed on the
continuous backgrounds, monoenergetic electrons
have also been observed from autoionization and
Auger de-excitation of the target and projectile.

The subject of this Letter is the continuous

spectra in similar measurements at much higher
energies—in particular, a prominent peak in
these spectra which is unique to collisions at
these energies. This peak is shown, on the basis
of the incident energy and charge-state depen-
dence, to be attributable to electrons knocked out
of the incident ion. A simple model of the elec-
tron-loss process based on elastic electron scat-
tering is described which semiquantitatively sup-
ports this identification.

We have measured the 90° electron spectra in
single collisions of oxygen ions with several gas-
es at energies of 17.5 to 40.8 MeV using charge
states of 3+ to 8+. The oxygen beams were pro-
duced in the University of Washington’s FN tan-
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