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from the total microscopic field the self-field of
the electron being excited, which does not con-
tribute to the local field inducing the transition.
As a result, they found e, '"' & e., for lower ~,
increasing the disparity between theory and ex-
periment, which is to be expected. In fact, sub-
tracting the self-field will enhance e, '"""over
&, for lower ~ and bring about closer agreement
between theory and experiment. This is a result
of the transformation in Eq. (1), as seen in Fig.
1, and even when there are ions at noncubic
sites, we find e, ""&c, for low cu. Thus their
hypothesis of significant dynamical correlation
effects is unnecessary. Subtraction of the elec-
tron's self-field, a difficult problem, might be
best accomplished by use of a phenomenological
parameter, as suggested by Wiser. '

In summary, the influences of local-field effects
in the optical spectra of solids must be kept in
mind when the spectra are interpreted or used
to evaluate theoretical calculations. An upper
limit to the magnitude of local-field corrections
is obtained from Eq. (1), while the degree of in-
itial-state localization suggests what fraction of
the full Lorentz local-field correction is appro-
priate.
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Correlation energies for simple-cubic metallic hydrogen are calculated using random-
phase-approximation {BPA) methods. Hartree-Fock Bloch functions for the real lattice,
including those for excited bands, were used as zeroth-order states. About 60Vo of the
BPA correlation energy originates from intraband excitations. The BPA correlation en-
ergy, including exchange, is estimated to be about —0.024 hartree/electron near the
Hartree-Pock equilibrium, leading to a total energy of about —0.490 hartree/atom.

The treatment of electron correlation effects
in real metals is still an outstanding problem.
For the limiting cases of high and low electron
densities satisfactory methods exist." The dif-
ficulties at intermediate densities arise since the
kinetic energy and potential energy are compar-
able. This leads to the breakdown of the electron-
gas model, particularly for the calculation of to-

tal energies, since the actual electron-lattice in-
teractions are not negligible. But this implies
that plane waves are no longer appropriate unper-
turbed functions in a perturbation treatment of
the correlation problem. In this communication
we present many-body theoretical results of cor-
relation- energy calculations for simple-cubic
metallic hydrogen using Hartree-Pock Bloch

797



VOLUME 30& NUMBER 17 PHYSICAL REVIEW LETTERS 23 APRIL 1973

(HFB) orbitals for lowest' and excited bands as
zeroth-order states. The major new physical ef-
fects thus taken into account a.re the exact (non-
local) exchange term in the HFB orbital energies
and the band gaps at the first Brillouin zone (BZ)
boundary. Since the electron-lattice interaction
is treated correctly in the HF calculations, we
also get a realistic total energy. This approach
was suggested by the success of perturbation cal-
culations on atoms starting from HF results. 4

The HF model does not account for any long-
range screening effects. Therefore, random-
phase-approximation (RPA) methods should be
used to overcome the divergencies in all but the
first order of perturbation. It is generally ar-
gued that the RPA is invalid at intermediate den-
sities. However, it should be recalled that, a,s
in any incomplete perturbation trea, tment, the
convergence towards the correct answer depends
heavily on the choice of unperturbed states. The
conventional RPA-like formulation invariably
starts from the electron-gas model which, as
pointed out above, is an unrealistic starting point.
We shall here report on preliminary numerical
results which indicate that our application of RPA
accounts for a major part of the correlation en-
ergy.

RPA correlation energies were obtained by
summing ring diagrams. Also exchange diagrams
were evaluated. In this Letter we only briefly
comment on the methods used. A more complete
report will be published elsewhere.

Consider a simple-cubic crystal at 0 K and with
lattice spacing a, built up from N hydrogen atoms.
Let e (k) and ) km) be the HFB energy and spin or-
bitals for the mth band, respectively. In the re-
duced-zone scheme the Bloeh vectors k are to be
inside the first BZ. Here the lowest band (m =1)
is half-filled. The zeroth-order Hamiltonian of
this system is the sum over the N HFB operators.
With Bloch orbitals the only nonzero matrix ele-
ments for the associated perturbation Hamilton-
ian are the electron interaction integrals over
HFB orbitals. Preparatory to later developments
we introduce the approximation

(k,i;k, jlr» 'Ik, +q, m;k, —q, n)=v;,. „(q). (1)

We found this to be particularly valid when i =j
=m =n =1 (intraband matrix elements). It is rea-
sonably good when i =j = 1, m and/or n o 1 (inter-
band matrix elements). Since i and j are always
1, we will suppress these indices.

With this assumption the multiband Dyson-like
equation for the RPA can diagrammatically be ex-

W

t(~) v , t(~)
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PEG. 1. Diagrammatic representation of some cor-
relation contributions considered. (a) Dyson-like equa-
tion in the RPA, (b) Second-order diagram with screened
interactions. (c) A diagram not included in (b). (d) Sec-
ond-order exchange diagram with one screened inter-
action,

pressed as in Fig. 1(a), where t(&u) is the frequen-
cy-dependent ring propagator. We considered
two solutions to that equation, namely the regular
sum over all ring diagrams and a sum over ring
diagrams with "forward" time ordering only [ring
diagrams that at a certain time have only two
hole (and particle) propagator lines]. This im-
plies that diagrams like Fig. 1(c) are not includ-
ed in this sum. In this ease the Dyson-like equa-
tion gives for the lowest band (i =j=m =n =1) a
i(&u) matrix element that can be expressed as a.

screened Coulomb interaction

t„(q, (u) =v„(q)/[1 +v„(q)A'(q, u))], (2)

A (q~ &) =-ZT [&+&i(k))

&u„(k) =e, (k) —e (k+q), (4)

where the k sum is over hole states k, for which
k+q are particle states within the first BZ. For
forward-time ordering the RPA correlation ener-
gy can be expressed diagrammatically as in Fig.
1(b) .

At this point it is of interest to notice that A'(q,
0) -1/lnq as q-0. This is because the exchange
term in v, (k) vanishes like q lnq for small q and
hence dominates over the kinetic-energy term
which is linear in q. As a result of this property,
t„diverges logarithmieally for small q. This be-
havior is a typical result of a rigorous treatment
of HF exchange, ' but this divergence is not strong
enough to cause problems in the evaluation of
correlation energies. The effective interaction
in Eq. (2) wa, s used to calculate exchange dia-
grams like the one dipicted in Fig. 1(d).

When we allowed for all time ordering in the
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Dyson-like equation, we obtained a correlation
energy expression that is a generalization of the

relation between the total energy and the imagi-
nary part of the inverse dielectric function. '
Since we used HFB functions and energies, the
dielectric function is related to the one derived
by Ehrenreich and Cohen in the multiband case. '
Integrations were performed with Gaussian quad-
ratures. All accuracies in these are about 1/p.

In the initial calculation of correlation energy
for metallic hydrogen only the lowest bands were
taken into account. For v»(q) and w, (k) we used
the HFB orbitals and energies obtained in earlier
work. ' There we found that the Fermi surface is
essentially spherical and that the occupied HFB
orbitals can be well represented by

~k1) = exp(2n ik r/a)g-, y, (r —ay). (5)

TABLE I. BPA correlation energies (in hartrees/
electron) for various lattice spacings a (in bohrs), cal-
culated with intraband excitations only. (1) Sum of ring
diagrams with forward-time ordering only (aE/N).
(2) Sum of all ring diagrams (~/N). (H) Estimated
fourth-order-type diagram [see Fig. 1(c)]. (4) Second-
order exchange diagram. (5) Same as (4), but with one
screened interaction t

&& (u) [see Fig. 1(d)].

(1) (2) (S) (5)(4)

B.50 —0.008 56 —0.0131 —0.0025 0.0028 0.0022
2.78 —0.0104 —0.0156 —0.008 0.0081 0.0025
1.00 —0.0207 —0.0291 —0.006 0.0042 0.0087

The sum is over the 1s Slater-type orbitals cp,

centered at lattice points ay. . We assumed that
the particle states in the first band could also be
given by Eq. (5). As indicated below this proved
to be a, valid assumption.

In Ta,ble I we have collected some typical intra-
band results for correlation energies with all
time ordering (~) and forward time ordering
(AE). We see that 60/p to 70% of the RPA corre-
lation energy is obtained with the forwa. rd-time
propagator t», the remaining part arising from
"irregular" diagrams like the one depicted in
Fig. 1(c). In Table I, column 3, we have given
crude estimates of this diagram. These were ob-
tained by averaging an upper and lower bound to
this diagram. Since their values are a large frac-
tion of ~—~ we conclude that considerable
cancelation occurs among higher-order diagrams.
With t» we can also study the effect of screening
on the second-order exchange diagram. Data for
unscreened and pa.rtially screened exchange [Fig.

1(d)] are also given. Screening does not reduce
the exchange diagram very much. In addition we
observe a. relatively weak dependence on the lat-
tice spacing a. This should be compared with the
strict density independence when the kinetic-en-
ergy operator is used as zeroth-order Hamil-
tonian. '

The t »(q) are expressed as reciprocal-lattice
sums. ' We found that they could be approximated
very well with only the first term. Actually AE

and ~' increased only by about 1% when we in-
cluded the lattice sum, the effect being larger for
larger lattice spacings.

In the next series of ealeulations we estimated
the effects of more realistic particle states in
the lowest band and the effects of including excit-
ed bands in the calculation. We obtained excited
band functions and energies as eigenvectors and
eigenvalues of the HFB matrix over plane waves
(PW's), using the previously obtained' Fock oper-
ator. From the discrepancies between the band
energies e, (k) obtained earlier and in this work,
we inferred a few-percent distortion of the Fer-
mi surface from its assumed spherical shape.
If the PW-HF formulation as described above
were carried to self- consistency, we estimate
the effect on the HF energy to be about 1%. Cur-
rently, we are investigating this in more detail.
In the PW-HF formulation we observed only a
few-percent change in the v-matrix elements,
but the particle energies were strongly affected
near the BZ boundary. There the band energies
are lowered considerably and their gradient in k
space now approaches zero. The interband ma-
trix elements are clearly more dependent on (k„
k, ) values. These quantities are a measure of
the PW mixing due to the electron-lattice interac-
tion. In the following calculations we invoked the
approximation of Eq. (1) by evaluating v-matrix
elements for a (k„k,) pair taken roughly in the
center of the allowed k integration range, as in
Eq. (3). This obviously is quite a crude approxi-
mation because of the strong PW mixing close to
the BZ boundaries when m and/or n c1. Numeri-
cal analysis has indicated that it causes roughly
a 10% error in the interband excitation contribu-
tions to the RPA correlation energies.

In Table II we have given, for certain selected
values of the lattice spacing a, the correlation
energy per electron calculated by summing all
ring diagrams. By comparing the AE values in
Tables I and II, based on intraband excitations
only, the effect of the use of realistic particle
states in the lowest band can be observed. The
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TABLE II. HPA correlation energies ~/& calculated as a sum of all ring
diagrams, including interband excitations and screened exchange diagram values.
The estimated total correlation energy is compared with predictions from the
Gell-Mann-Brueckner high-density formula (Hef. I). Energies are in hartrees/
electron, and lattice spacings a are in bohrs. (I)—(4) DE/iV including contribu-
tion from 1 to 4 bands, (5) Screened exchange diagram [Fig. 1(c)], calculated
with intraband excitations only. (6) Estimates of total correlation energy.
(7) Correlation energies from high-density electron-gas formula (Ref. 3).

(2) (3) (4) (5) (6)

3.50
2.73
1.00

—0.018
-0,020
—0.035

—0.025
—0.028
—0.046

—0.026
—0.029
—0.047

—0.026
—0.030
—0.048

0.0044
0.0044
0.0053

—0.020
—0.024
—0.041

—0.0239
—0.0316
—0.0628

exchange diagram with one screened interaction
is changed most drastically. This comes from
the inherently large contribution to its value from
large momentum transfer q.

In Table II we have also given the results of~ calculations as an increasing number of ex-
cited bands are taken into account. These data
indicate that 60% to 70% of the RPA correlation
energy comes from intraband excitations and that
the second band gives most of the interband con-
tributions. For very small a values we should
ultimately approach the high-density limit, in
which interband excitations should be negligible.
It is therefore consistent to find the proportional-
ly largest intraband excitation contribution at the
smallest lattice spacing.

In the last two columns of Table II we have com-
pared tentative estimates of the total RPA corre-
lation energy, including exchange, and the values
from Gell-Mann and Brueckner's high-density
electron-gas formula. ' The estimates are made
by adding ~ from column 4 to the screened ex-
change value of column 5, increased by 30% to
correct for excited band contributions. Though
our numbers are still in error to about 10%, as
a result of Eq. (1}, the difference between the
last two columns is significant. The high-density
results are unrealistically large for all a, where-
as our result for the value a near the HF mini-
mum comes quite close to the expected —0.02
hartree/electron known from atoms and small
moleeules. ' Also our estimates exhibit a weaker
dependence on a (or, equivalently, the electron
density) than the Gell-Mann-Brueckner values

~gain in accordance with experience from
atomic and molecular calculations. '

Finally, we want to point out that the HF ener-
gy exhibits a minimum of about —0.466 hartree
near a = 2.73 bohr. ' Hence the sum of the HF en-
ergy and RPA correlation energy is about —0.490
hartree, well above the free-atom value.
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lation.
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