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Previous theories of off-diagonal disorder in the tight binding model of a binary alloy
are found to be incorrect in the dilute limit. We treat this limit exactly, and discuss the
extension to arbitrary impurity concentrations.

Recently, authors' have devoted a great deal
of attention to the following model of the binary
substitutional alloy A„B, „:

n&m

The simplifying feature of the model is that the
effects of the disorder do not extend over any
finite distance. Thus, the local energy levels
c„may take either of the two values c"or e~,
but the hopping integrals h„are always periodic.
On the basis of a comparison with exact results
concerning the limits of the allowed energy spec-
trum and the values of its leading moments, ' it
has been generally agreed that an excellent mean
field description of the model is provided by the
coherent potential approximation (CPA). There
is, however, another class of exact results that
are beyond the scope of this localized perturba-
tion model. These results, the most basic of
which is the Friedel sum rule, ' concern the
choice of self-consistent atomic potentials. As
Stern has shown, the essential difficulty lies in
the assumption of zero-range scattering forces.
Accordingly, a more physical description of the
alloy must include off-diagonal disorder, i.e.,
we must allow both h and e„ to vary randomly.

The problem of extending the CPA to treat off-
diagonal disorder has been discussed by several
authors. ' In addition, their methods have re-
cently been applied to the spin wave spectrum in
alloys of Heisenberg magnets, ' a system for
which the diagonal and off-diagonal scattering
must certainly be treated on an equal footing. It
is important then to realize that none of the pro-

posed approximations is correct in the low-den-
sity limit. Unfortunately, this is precisely the
limit of interest for the Friedel sum rule in me-
tallic alloys, and also for making contact with
the exact results of Wolfram and Caljxway' in
the case of insulating magnets. The present pa-
per is limited to a discussion of the electronic
problem; the formalism however is directly ap-
plicable to magnetic systems.

We begin by considering the Hamiltonian for a
single A impurity at the origin of an otherwise
perfect 8 crystal,

H =Ha+ l 0& bo(ol

(2)

b =(e"- e ) b =(h"s hss) ~

v(k, k') = b, + b,[s(k) + s(k ')j, (4)

where s(k) =g„exp(ik. R„) [the host E versus k
relation is then Es(k) = e +h s(k)j. For a given
(complex) energy z, Eq. (4), together with the
unperturbed Green's function G ' (k) = [z —E (k)] ',
permit an exact solution for the matrix elements
of scattering operator t(k, k') =(kl[1 —vg~ j 'v

the prime indicates that only nearest neighbors
are included in the summation. h~ and h" = h

describe host-host and impurity-host hopping, re-
spectively. In a momentum representation, the
impurity potential v(k, k') may be written
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a,(z) +a,(z)[s(k) +s(k')]+a, (z)s(k)s(k')
l —D(z)

(5)

where

a, (z) = 6, +6,'E,(z), a,(z) = 6, — 6,
' E( z), a,(z) = 5,'E (z),

D(z) = 50Eo(z) +26,E,(z) —6,'I[E,(z)]' —Eo(z), E„(z)= JBz G~ ~(k)[s(k)]"d'0, n = 0, l, 2. (6)
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FIG. 1. The various possibilities for the bound states
of a single impurity in one dimension.

All information about the scatterer's effect
on the electronic spectrum is contained in t(k, k').
For example, fixing the values of 6, and 6„ the
zeros of the denominator in Eq. (5) determine
the energies of the possible localized impurity
states. In one dimension these energies can be
evaluated analytically and the various cases are
shown in Fig. 1. The situation in three dimen-
sions is qualitatively similar. Two intersecting
parabolas divide the 6„6,plane into three re-
gions within which there are zero, one, and two
bound states, respectively. In the absence of
off-diagonal scattering, h =h, and there is
a single bound state for any 5, &0. We note, how-

ever, that in the case 0 &h &h this bound
state does not appear until 6, reaches a certain
critical value 5,'. The most interesting behav-
ior is obtained when the scattering is purely off
diagonal. If h" &h ~ there are two roots, cor-
responding to the bonding and antibonding levels
of the molecular cluster at the origin. Beginning
on the vertical axis, as the value of 60 is in-
creased, the lower root moves up and eventually
merges with the continuum as we pass from re-
gion III into II.

If instead of a single scatterer we consider a
macroscopic concentration x of impurity atoms
then the equilibrium properties are most con-
veniently described by the ensemble-averaged
Green's function G(z) =([z —H] ') =—[z Hz —Z(z)] ', —
where Z(z) is the usual electron self-energy. The

preceding results for the single impurity allow
us to understand the behavior of the alloy in the
low-density limit x«1. More specifically, it is
well known that in this limit the self-energy is
given by Z(k, z) —= (k ~ Z(z) ~ k) = xt(k, k), and, in
addition, that each of the bound states of the sin-
gle scatterer will give rise to an impurity sub-
band of finite width. The various approximate
treatments of off-diagonal disorder are not con-
sistent with this result and cannot therefore be
relied upon to provide an accurate description of
the impurity band structure over the entire range
of values of 5, and 5,.'

As indicated at the outset, the initial motivation
for examining the problem of off-diagonal disor-
der was to develop a theory that was consistent
with the Friedel sum rule. Fortunately, this
point can be understood in terms of just the low-
density limit x -O'. Indeed, the usual deriva-
tions of the Friedel sum rule' involve only a sin-
gle impurity, with relative valence Z, in an oth-
erwise homogeneous electron gas. Screening by
the free electrons implies that the resulting per-
turbation is of finite range and that, asymptoti-
cally, the electronic structure is identical to
that of the pure host. The final result is the fa-
miliar expression relating the valence Z to a
weighted sum of phase shifts g, . This form of
the Friedel sum rule is, however, somewhat in-
convenient for use in conjunction with the present
model. Consideration of a single impurity in a
host lattice consisting of -10"atoms is rather
unsatisfying since a real system contains a finite,
although possibly macroscopically infinitesimal,
concentration of impurities. In addition, in a
crystalline lattice the asymptotic region surround-
ing each impurity is certainly not spherically
symmetric so that the notion of a phase shift is
slightly ambiguous. It is nevertheless possible
to formulate a completely general statement of
the physics underlying the Friedel sum rule in
terms of the purely macroscopic parameters x
and p, , respectively characterizing the impurity
concentration of the alloy and its chemical po-
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tential. Friedel noted' that, as a direct conse-
quence of the total screening, the chemical po-
tential is unchanged by the addition of dilute im-
purities. Formally, the requirement is

(d p,/dx) „,+ = 0. (7)
This equation provides an important check on

the choice of scattering parameters in any finite
concentration alloy theory. Every such calcula-
tion must be consistent with Eq. (7) in the dilute
limits x —0' and x —1 . For example, if n A' and
n~' are the constituent carrier numbers then the
concentration dependence of the chemical poten-
tial p(x) is defined by the relation

(n) =xn„'+(1-x)n~'
= —2m

' Im f„TrG(E+) dE. (8)

Combining Eq. (8) with our low-density expres-
sion for G(z), differentiating with respect to x,
and evaluating the resulting integral exactly,
the self-consistency condition (7) is found to im-
ply the relation

Z =d(n)/dx =n„' —n~'

= —2n 'Imp s(d/dx)[TrG(z')]„, +dZ

= —2~ 'Imln[1 —D(p, s)]

ImD( p, ~)
1 —ReD(ps) '

p. ~ is the chemical potential of the host crystal
and D(E) is defined by (8). Equation (9) is the
form of the Friedel sum rule relevant for the
tight binding alloy Hamiltonian and is, in fact, a
special case of the general 8-matrix relation

(9)

Z =(2vi) 'Tr[inS(p. ~)]

proved by Langer and Ambegaokar. " Equation
(9) together with the corresponding result for
x = 1 provides an important constraint on our
choice of input parameters. For example, if
(in addition to the relative valence Z) we specify
the values of the pure crystal hopping matrix
elements h"" and h then the two Friedel sum
rule equations can be used to fix the values of the
"scattering parameters" 50=a —e and t" . In

practice, however, the success of this program
depends on the value of Z, the location of the
host Fermi energy p, ~, and also on the shape of
the density of states p~(E). Indeed, the effects
of off-diagonal disorder are most important in
the case of isovalent impurities (Z =0). As
Stern' has shown, if the scattering is cell local-
ized (5, =0), then the Friedel sum rule immedi-
ately implies that 5, = 0, i.e., that the two constit-
uents are identical. Including the effects of off-
diagonal disorder allows us to avoid this contra-
diction in all cases except one: when the host
crystal corresponds to a half-filled symmetric
band. " In contrast to the isovalent case, finite
values of Z do not, in principle, present any dif-
ficulty. In the limit of cell-localized disorder,
this problem has been discussed by Clogston. "
If [Z[«1, the Friedel sum rule always fixes a
well-defined value of 5,." However, as IZ~ is
increased, the conclusion of Ref. 12 is that the
ability of the Friedel sum rule to determine a
self-consistent value of 5, is limited by two fac-
tors: the use of a single band model, and the as-
sumption of localized scattering. Since the pres-
ent discussion is still based on the single band
model, we again expect that well-defined solu-
tions of Eq. (9) will be limited to small IZI, al-
though, for a given choice of p, ~ and p~(E), the
range of allowed values of IZ) will most probably
change.

Finally, we consider the problem of extending
the theory to finite impurity concentrations.
There are three minimal requirements to be sat-
isfied by any approximation scheme. The equa-
tions should be invariant under the interchange
of A and B atoms, exact to first order in the im-
purity concentration in both the limits x -0' and
x -1, and should reduce to the usual CPA in the
absence of off-diagonal disorder. Obviously,
these criteria do not determine a unique descrip-
tion of the alloy and we present here only the
simplest consistent equations. In this spirit, let
us assume that the AB transfer integral is given
by the average value h" =(h" +0 )/2. Without

any further approximations, the Hamiltonian (1)
can then be rewritten as

H =Hs+ Q [ n) 60(n ~
+ Q 5,[[n) (m

~
+

~
m) (n ~]I =H~+ g v„~,

nEA m&n nCA
(10)

where 5, and 5, are defined by Eq. (3). In Eq. (10) the disordered part of H has been expressed as a
sum of (finite ranged) scattering potentials associated with each of the A atoms. This description is
obviously sensible in the limit of dilute A impurities in a B crystal and, in addition, is symmetric
under the exchange of A and B atoms. Indeed, H can also be written as H~+ Q„e~v„s, where v„~
=- v„describes the scattering of a B atom in an A host.
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Once the disordered Hamiltonian has been written as in Eq. (10), we can immediately apply the dia-
grammatic techniques developed by Yonezawa. " The electron self-energy is then calculated from the
relation

~(k, z) = QQ, (x)(klv(Gv) Ik)
P=1

and the matrix elements v(k, k') are defined by Eq. (4). The renormalized cumulants Q~(x) are poly-
nomials in x of degree p but can, in fact, always be written as symmetric functions of x and 1 —x. If
there is no off-diagonal disorder, then the terms in (11) are independent of k, the summation can be
evaluated exactly, and we regain the CPA. In the presence of off-diagonal disorder, the solution of
Eq. (11) for specific choices of the input parameters x, 6„and 5, will be discussed in a subsequent
publication. For the present, we note that [because Q~(x) -x (all p) as x -0], Eq. (11) reduces to the
exact result Z(k, z) =xt(k, k) in the dilute limit, and that in addition, if the scattering is weak, we ob-
tain the virtual crystal result G(k, z) = [z —(H)] ', where

(k~(B) ~k) =(xe +ps )+[x'k "+2x(1-x)k" +(1-x)'ks ]s(k).

The first term in this equation gives a linear shift of the band center from c -e, while the second
term expresses the effective bandwidth as an appropriately weighted average of the various transfer
integrals.

The authors are grateful to Professor H. Ehrenreieh and Dr. K. Levin for stimulating our interest
in this problem. Conversations with Professor A. Luther are also appreciated.
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