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dition at the interface. This subject wi11 be dis-
cussed in a further report.

P. K. Currie has obtained independently simi-
lar theoretical results. A detailed numerical
calculation together with a comparison with Cur-
rie's description will be given elsewhere.

*Laboratoire associe au Centre National de la Recher-
che Scientifique.
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Of course, for samples with ~, =0, the usual Benard
process, for isotropic liquids heated from below, takes
place. But as soon as t&, &10 6 cm sec ' the anisotrop-
ic mechanism is the dominant one.

'We use the notations and values of the viscosity coef-
ficients given by Ch. Gahwiller, Phys. Lett. 36A, 311
(1971).

In isotropic liquids, the formation of hexagons is ob-
served when the viscosity changes with temperature are
important. A general discussion of heat-convection ef-
fects in isotropic liquids is given in S. Chandrasekhar,
IIyd~odynamic and IIydromagnetic Stabi7ity (Oxford
Univ. Press, Oxford, England, 1961).
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Both analytic theory and inhomogeneous plasma simulations are presented to show the
nonlinear development of the Brillouin and Raman backscatter instabilities. Nonlinear
fluid behavior predicts a backscatter energy on the order of the incident laser energy,
but particle trapping and heating effects associated with the excited electrostatic wave
can significantly reduce this.

%hen laser light above certain power levels ir-
radiates a plasma, collective processes occur
which can either enhance' or retard the light ab-
sorption. ' ' In the latter case the incident energy
is reflected by the plasma through the decay of
the incident light wave into a backward-traveling
light wave and either a low-frequency ion wave
(stimulated Brillouin scattering) or an electron
plasma, wave (stimulated Raman scattering). The
energy in the light wave is thus prevented from
arriving at the critical surface (that place in the
plasma were the plasma frequency equals the
light-wave frequency) where enhanced absorption
can take place. Since energy absorption' is cru-
cial in laser fusion and ionospheric radar modifi-
cation applications, ' a knowledge of the penetra-
tion depth allowed by these instabilities and the
incident energy reflected is required.

These backscatter instabilities' are examples

of the backward wave oscillator problem. The
temporal linear theory (real k, complex & ) and
the spatial linear theory (complex k and &u) have
appeared in the literature. '

¹nBnear Problem. As in the —linear theory
the fluid equations for ions and electrons are
combined with Maxwell's equations using the vec-
tor potential formalism, ' but the reaction of the
backscattered and electrostatic waves on the
pump wave is no longer neglected. As discussed
in Ref. 2, there are three linear waves excited
by the circularly polarized pump wave, two elec-
tromagnetic and one electrostatic. In both the
Brillouin and Raman problems, one of the elec-
tromagnetic waves, the forward scattered wave,
is not in resonance and can be neglected. Insofar
as electrostatic steepening terms and higher-or-
der mode coupling terms are negligible, the fol-
lowing set of equations describe both the Brillou-
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in and Raman instability evolution:
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In these equations, A, or A, is the vector poten-
tial of the pump or backscattered wave, n,. is the
density fluctuation, co~, is the plasma frequency
of the jth species, v, '= T,/ m„~yis the damping
rate of the electrostatic wave, and y is the ratio
of the specific heats and is equal to 1 or 3. The
ion temperature T,. is taken to be zero.

For the temporal problem, after Fourier ana-
lyzing in x, Eqs. (1)-(3) describe three coupled
harmonic oscillators whose behavior in time is
quite different depending on whether the linear
growth rate I" of the instability is large or small
compared to the uncoupled frequency 0 of the
electrostatic wave. Expressions for the growth
rates' ' (for I' & Q and y„= 0) of these instabilities
are I' = &u~ kv, /l8 Q+, M,. /m, l'" for the Brillouin
case, where Q—= v, =—kc„c,=(yT, /M;)"', and I"
= m~kv, /I8Q&u, l'i' for the Raman case, where Q
—= v, —= (&u~'+ yk'v, ')'i'. In the above expressions
v, =eIEDI/m, u&o, Eo=—(v, /c}AD, u, and k, are the
incident laser frequency and wave number,
= 0 —~„and k 2k'p is the wave number of the
electrostatic wave.

In the weak coupling limit (I"& Q), the solutions
of similar equations which have been described
elsewhere' show that A y OI E y reaches its peak
value of E,'/l&u, l=E, '(0)/la, l at the same time
that n, /n, reaches its peak value. This behavior
is modified by particle trapping if the electrostat-
ic plasma wave becomes sufficiently large such
that v„,„—= (2eE/mk)'" & Q/k —2v, „,"where E is
the electric field of the electrostatic wave. This
effect leads to an increase in the damping of the
density fluctuation n, and production of high-ve;
locity particles in phase space (non-Maxwellian
tail formation). And, of course, if n, /n, exceeds
unity at some point in the oscillation, wave break-
ing occurs and the oscillations predicted by the
fluid equations cease.

In the strong coupling limit" (I'&Q), the linear
growth stage also stops when the backward-trav-
eling light wave reaches nearly equal amplitude
with the pump. The density continues to evolve,
and in the Brillouin ease is given approximately
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where k, =k -ko, n, = eA, /(m, M,c')'i', and v = c,
for the Brillouin problem, and

n,
. =e A, (/mc')

and v = y'"v, for the Raman problem. The tempo-
ral stability of the solutions of these equations
for weak damping has not been examined. " For
y~=0, the solution to the infinite half-space prob-
lem is n (0k, /k, )' i'n, = n, (0) sech(x/L, '), where

1/2
4

v, (0) k, (u~ nv, '

This solution corresponds to nearly total re-
flection with an evanescence length L, . Computer
simulation studies verify this small evanescence
length only when the electrostatic wave remains

2 2
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np v

To arrive at Eq. (4) from Eqs. (1)—(3), assume
A, A, is time independent and let n, —=n,. and y,
= 0. Equation (2) can then be integrated. In the
strong-coupling regime I" -(&u~, 'k'v, '/. u&, )'". If
n, /n, remains less than 1 and negligible particle
trapping occurs (v„, & Q/k —2v, „), the system
oscillates according to Eq. (4). If particle trap-
ping occurs, the oscillations are damped. If v, /
v, ) 1, however, the wave breaks and the oseilla-
tions predicted by the fluid equations cease, as
verified by simulations. '

In the weak-coupling limit and for y„=0, the
procedure used in Ref. 8 for the temporal prob-
lem can be applied to the spatial problem and an-
alytic solutions can be obtained. If Eqs. (1)-(3)
are Fourier analyzed in time, a standard analysis
with small amplitude variations over a wavelength
can be carried out." Equations (1)-(3) reduce in
steady state to
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of sufficiently small amplitude to preclude nonlin-
ear damping effects. If a density gradient is al-
lowed, an additional wave-number mismatch
term must be included in Eq. (5') which can fur-
ther reduce the backscatter.

In order to obtain better agreement with the
computer simulations, a finite y„must be al-

FIG. 1. Length of plasma, I., in units of L ~ as a func-
tion of P for 50% energy reflection for three values of

For comparison, L =10P is plotted.

lowed, implying that dissipation due to particle
trapping is important. %hen the damping is suf-
ficiently la, rge such that P —= ,'y„—I„&u/kv' »1, the
problem formally reduces to stimulated Brillouin
or Raman scattering in solids for which a nonlin-
ear theory exists. " From Tang's theory, "the
penetration depth of the incident laser is large,
typically I.-10PI, For Brillouin scattering P
-k Zo(y, /(u, )c/v, .

For arbitrary y„, Eq. (5) can be solved numer-
ically to obtain the reflection from a plasma slab
of thickness I, with the boundary conditions n, (0)
= 0, a,(0) and n, ( I) = e, where e. is the noise
level. Figure 1 shows the thickness as a function
of P for 50% reflection. In laser fusion applica-
tions it is desired, of course, that this length ex-
ceed the distance to the critical surface where
strong absorption can take place.

Simulation studies of saturation. —A large num-
ber of one-dimensional simulations in homoge-
neous plasmas have been carried out in which
careful choice of parameters has allowed isola-
tion of the various types of behavior discussed
above. ' The results of these idealized cases sup-
port the above theoretical treatment, while the
simulation of a more realistic problem in which
both instabilities occur simultaneously is dis-
cussed below.

Figure 2 summarizes the results for this case
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FIG. 2. (a) Density profile, and (c) ion and (d)-(0 electron X-Vz phase-space plots at noted times in units of ~g
for a simulation with parameters n~~/n~=0 5, vo/c=0. 1, && /m, =1&35, T~/5&=10, v~/c=0 05, a system length of
150c/coo, 20000 simulation particles, 1024 cells, and time step 2~0 . V is the X velocity in units of c. (h) Trans-
mitted electric field amplitude through the left boundary of density profile.
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in which a laser light wave is launched from the
right into the subcritical (n,„/n, -0.5, where &e~
= ~, at n, ) plasma whose initial density profile is
shown in Fig. 2(a}. The transmitted light and the
high-energy particle flux are monitored and ab-
sorbed at the left-hand boundary of the simulation
plasma. Figure 2(b) shows the amplitude of the
transmitted light at the left boundary as a function
of time. Initially, there is 100/o transmission.
The first minimum occurs at t= 500~, ' and is
due to the Raman instablity. The second mini-
mum, occuring around /=1000(Lp ', is due to the
Brillouin instability. At the end of the run 40Vo

transmission is obtained because the electron
heating has increased L,, and thus the penetration
depth.

Figure 2(e) shows the excited electron plasma
wave at t= 440+0 ' due to the Raman instability
which is very coherent at this point and thus able
to cause strong reflection; the initial electron
phase space is shown in Fig. 2(d) for compa, rison.
A simila, r behavior (not shown} is seen in the ion
phase space at i=1000&v, '. Figures 2(c) and 2(f')

show ion and electron phase space at t= 172060p

The ion wave in the Brillouin instability is clear-
ly evident. The substantial electron heating from

440 Gop to t 1720(Go
' is due to strong el ec tron

trapping.
At t=1720coo ', the hot electron energy flux at

the plasma boundary (x= 25c/&u, ) is about 25% of
the incident laser energy flux. Most of the elec-
tron heating results from the Raman instability
which, from a simple energetics argument using
the fluid equations, is capable of absorbing 50%
of the incidnet laser energy at densities near
n/n, = ~, the critical surface for the backward
light wave. The electron heating, in fact, is
causing the low-density ion blowoff seen in
Fig. 2(c).

Application to experiments. Inhomogene—ous
thresholds are usually more important than colli-
sional thresholds in experiments. In an inhomo-
geneous plasma, the threshold condition for the
Brillouin instability is v, '/v, ' & 4/k, I.„or 4lk
—k, lc'/1. ,&u~', where I „and I, are the local
density and temperature scale lengths. " For the
Raman instability, the inhomogeneous threshold
is v, '/c'&4(k —ko)/k'L„." For a finite-size
plasma of length I-, convective loss also leads to
a threshold condition I./L, & 1.

The enchanced backscatter observed in laser
target experiments is probably due to the Brillou-
in instability. " The fraction of light reflected is
not always large, presumably due to the large

size of P or to the relatively small scale length
of the expanding underdense plasma.

Discussions with S. Bodner, J.Deoroot, Y. C.
Lee, and C. Nielson are gratefully acknowledged.
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Effects of large phase gradients on the Josephson relation have been estimated by a
modification of the Aslamazov-Larkin theory. The results are applied to explain the
Dayem-Wyatt effect.

In some circumstances current density asso-
ciated with the Josephson phenomena can be quite
large. When this occurs, effects due to the spa-
tial variation of the quantum phase may become
important. Ordinarily, for insulating tunnel bar-
riers, such effects are negligibly small because
of the relatively low current density associated
with this type of barrier. However, these effects
could become significant in junctions in which the
dimension parallel to the current flow approxi-
mates the de Broglie wavelength ot' the current.
This Letter outlines an analysis of that situation
based on a modification of the Aslamazov-Larkin
theory. ' The results of the analysis are used to
describe the large Dayem-Wyatt effect' in prox-
imity-effect bridges.

In the proximity-effect bridges, the cross sec-
tion is typically about 1.0 ' cm' and thus, for a
given current, the current density is about 10'
times that in the usual superconducting-normal-
superconducting (SNS) tunnel junction. Experi-
mental results on the variation of critical current
with temperature for a typical short tin-gold prox-
imity-effect bridge are given as the solid line in
Fig. 1. The current is exponential in tempera-
ture as predicted' for SNS junctions, but varies
with temperature somewhat more rapidly than
anticipated. Application of rf radiation in gener-
al enhances the critical current of these bridges.
Figure 1 also shows the maximum enhanced su-
percurrent for this bridge when irradiated by 2-
GHz radiation.

The usual Josephson analysis considers cur-
rent flow through a junction region separating
two supereonductors of constant phase, p, and

Aslamazov and Larkin (AL) showed that at
low current density Josephson's result also fol-
fowed from a model which treated the junction as
a two-phase region in which the amplitude of the
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FIG. 1. Temperature dependence of the critical cur-
rent of a Sn/Au proximity-effect bridge. Crosses, data
points without external rf; circles, those for maximum
enhancement by a 2-GHz rf field. T~(Sn) is the transi-
tion temperature of the tin film. Bridge dimensions:
length, 1 pm; width, 39 pm; thickness, O. l pm and re-
sistance, 10 m~.

separate phases was strongly position dependent.
They assumed that in the region of a junction

separating two similar superconduetors l and 2,
the wave function was composed of two terms,

4'=0, +0, = 4,'If(x) exp(iq', )+[i -f(x)] exp(ip )),
where f(x) is a function which rapidly goes to
unity in superconductor 1 and zero in supercon-
ductor 2, and g, is the undisturbed amplitude far
from the junction. Thus the first part of the wave
function above is phase coherent with supercon-
ductor 1 and the second part is phase coherent
with supereonduetor 2. If current is defined in
terms of the usual gradient operator, AL showed
that the current resulting from this wave function
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