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symmetry for the output-octet trajectories is
preserved,

Taking the ratio of Eqs. (12) and (13), we ob-
tain A„ /A, ~

= ~ expI(nR —1)&], where the co-
efficient in the right-hand side is independent of
a or b. This universality relation" agrees quite
remarkably with the experimental data (with a
typical error of 20%) for A»~o/A»p =A~~~o/AE~
=1,2e '' . Other interesting relationships"
can be derived by generalizing our result to cases
with quantum numbers, such as (for ah exotic)

~as Oau 2 Oau ' 0 av 0 av

Unfortunately, the present data available a.re not
sensitive enough for a meaningful comparison of
these relations.

In closing let us stress that this model provides
a promising bootstrap framework for a realistic
calculation of the Regge parameters appearing
in both exclusive and inclusive cross sections.
Applications along this line and refinements of
the model will be published elsewhere.
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A sum rule for isovector Compton scattering, previously derived using dispersive tech-
niques, is rederived using the ++ light-cone commutator. The (nontrivial) limit of the
sum rule at q =0 is given, and is found to be in excellent agreement with experiment.
The deep-inelastic limit of the sum rule is discussed in the context of the covariant par-
ton model, where it is shown that the free-field realization is untenable.

Some time ago, several authors" derived sum rules for the absorptive parts of certain of the in-
variant amplitudes appearing in a tensor decomposition of the fu1.1, spin-dependent, nonforward scat-
tering of vector or axial-vector currents from nucleons. The sum rules were derived using the co-

722



VOI.UME 30, RUMBLER 15 PHYSICAL RKVIKW LKTTKRS

variant Fubini approach, ' with its attendant assumptions concerning unsubtracted dispersion relations
for some of the amplitudes. Two of these sum rules are of particular interest, since they can also be
derived from a knowledge of the simple ++ li.ght-cone commutator, using the approach of Dicus,
Jackiw, and Teplitz. " One of these, of course, is the Dashen-Gell-Mann-Fubini (DGF') sum rule. '
Support for the DGF sum rule is grounded in the validity of its q' derivative at q'=0, the Cabibbo-
Radicati sum rule. ' Its extension to physical neutrino scattering (the Adler sum rule') in the large-q'
region has played a seminal role in the development of the scaling hypothesis by Bjorken. '

The other sum rule, which is of the form

f, [a, ( v, q', q', t) —a, '( v, q', q', t) ] d v =- -E,"( t),

was examined cursorily (and inconclusively) in Ref. 1 for the case of nonconserved axial-vector cur-
rents. In this note, after briefly rederiving the sum rule using light-cone techniques, 4*"0 I would like
to display its form at q'=0 for the case of vector currents, and show that agreement with the data is
excellent (to within better than 5%%uq}. I will then go on to discuss the deep-inelastic limit of the sum
rule in the context of a eovariant parton model.

The nonforward commutator function

yt „."(P,q, ;P.q.) =(2 ) 'fd' .""&P.l,[~„(.' },I,'(--! }]Ii, ) (1)

[with Q = —,(q, + q, )] may be expanded into a complete set of second-rank tensors" in which the coeffi-
cients (the invariant amplitudes') are free of kinematic singularities and zeros. Keeping q, =q, allows
time-reversRl lnvRllRnce to 1 educe the 32 possible lnvRrlRnt amplitudes ' to 20. With the deflnltloDS
P= ~(p, +p, ), 6 =p, -p, = q, —q„we write (omitting isotopic indices)

~'p.="(&2)4aJm')P pP.+ a.(P pQ, +P,Q „)+(a, /2m)(P p) .+ P.&p)+ a,Q „Q.+ a,(Q p~.+ Q.) „)+a.&p&,

+a7up, + &&(P p&.—P,&„)+&,(Q p&„-Q, t) p}+&,(&py„- &„)p)+ (c,/m")P „Q„y Q

+ c2(P p'Q p+P pQ p)'p"Q+ cgQ pQ p)"Q+ c4&p&p'V'Q+ cgg p
p'Y"Q I c6([)'pi 7"Q]&p+ [Tp, 'V"Q] &u)

+d, [yp, ).]+d,(&pe'Q). —y, y Qyp)+d, (Pp&„-P.t p)y Q

d,(b., ~ Q]Q„- [~„, ~ Q]Q.)f.(~,),

where the (a, b, c, d}are functions of Q', P Q, and 6', and m is the nucleon mass. We consider only
the conserved nonstrange isovector currents. Then gauge invarianee of W„„provides eight linear re-
lations which reduced to twelve the number of independent scalar amplitudes. For the discussion
which follows~ only oDe of these 1 elRtloDS ls of 1.mportRnce:

va, /m =- (-,'t -q'}(a, + 2d, ) + —,'t(b, —2c,),

where mv=P Q. We adopt a conventional normalization: &P'/P)=(P'/M)(2m)' 0'(P'-P) for baryonic
states, uu=1 for spinors. Now set q, „=q, ,=Q,=O, and integrate the p=+, v=+ component of Eq. (1)
over Q :

f „dQ W„"=fd'x, d~ exp(-tg, .x,)&t, ~ [V, (-,'x), V„'(--.'x)]~p, )„
From Eqs. (2) and (4) and the knowledge of the ++ light-cone commutator, '" one can obtain

f „dv ](P,/m) a, "(v, q', t)u 2u, + [a,"(v, q', t) + vc, "(v, q', t) ]u, y, u, + (P,/m) c, ''u, ) ~ Q ~ u, j
= ...&t, ll, (0}lt,&,

with P ~ Q~=0. Now we specialize to the odd-charged combination 8'p, & ) = 8'p, '""' "—g
—= W &, -8"&,'. With the isovector current written as

&P, I I'„'IP, &= u(P, )-',4[+,"(t} I "(t)b„-I'."(t)P„/mku(P ),
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the linear indePendence of the quantities u,u„u, y, u„and u, y~ Q~u, allows us to write the sum rules

f „a,' '(v, q', q', t) d v= —2E,"(t),

f [a, ' &(v, q', q', t)+ vc, ~ l(v, q', q', t)]dv=2[F, "(t)+F,"(t)],

f „c,i l(v, q', q', t) dv=0,

(7)

(8)

(9')

where a, =a, -a, ', etc. The odd crossing property of c, in v makes the last sum rule trivial,
while the even crossing properties of a, ~, g, ~, and vc, lead to the final versions

([W, ( v, q', q', t) —W,, '( v, q', q', t}] d v = F,"(t),

f [a, (v, q', q', t) —a, '(v, q', q', t)] dv= —E,"(t),

where 5', =a, +a, + vc, reduces to the usual 8',, at t=0. The first is the tw0 generalization of the DGF
sum rule, while the second is the sum rule derived in Refs. 1 and 2, and the object of our study.

First, we isolate the one-neutron contribution, and rewrite Eq. (11) as

—E "(q')F,"(q')+f,' '(, q', q', t)d = —E,"(t), (12)
~th

where v, h=m, + (m, ' —q'+ —,t)/2m, with q' ~ 0; we shall deal always with t very small or zero, so that

v, „&0. For q'=0, t=0, vWO, we find from the gauge condition (3) that a, (v, 0, 0, 0) =0, and Eq. (12) re-
duces to the statement F,"(0)= 1.

Let us now set q'= 0, t 40; Eq. (3) shows that va, = ,trn(a, + 2b—,—4c, + 2d, ), and since none of the am-
plitudes have kinematic singularities, da, /dt = lim(t-0)(a, /t). We then take the derivative of Eq. (12),
with respect to t, to obtain

a, ' '(v, 0, 0, t) dE, "(t)
(13)

One may test this sum rule by relating [a,~ l(v, 0, 0, t)/t]„, to isovector photon-scattering amplitudes.
This is most easily done by noting that our a, is related to the invariants A, and A, of Hearn and Lead-
er" by

a, (v, 0, 0, t) = —(t/4mv') Im(A, —A, ). (14)

Then one proceeds straightforwardly to write A., —A., in terms of helicity amplitudes, "and to use the
signer-Eckart theorem to do the necessary isospin rotation to isovector photons for the I= —,

'
and I= 2

intermediate states. Unitarity may then be used to relate the Compton helicity amplitudes to the multi-
pole amplitudes found in analyses of single-pion photoproduction (at least at low energies). This kine-
matic detail will be presented in a future publication. It will suffice for us at present to write the sum
rule in terms of purely resonant contributions, and express these in terms of Walker's amplitudes A&,
A. =-,', —,', which are defined" as the amplitudes for decay of a resonance at rest of spin S, =x into a pho-
ton going up the z axis with helicity + 1, and a nucleon going down the z axis with helicity 1 —p. The
normalization is given in Ref. (13). In terms of these, the sum rule can be reduced to

1/'2

Q e„C„v„'lA,~,'+A,~,
' —-: [(J ——,')(/+ -', )] A,t+,&„=—E,"(t) = 11.0 Gep ', (15)

where {."„=2 (- 1) for I= —,
'

(
—', ) resonances, and e„ is the fraction of the photoexcitation which proceeds

through the isovector component of the photon. Using Walker's values for the A ~'s, "the left-hand
side of Eq. (15) reads

8.70+ 2.05+0.24+0.18 GeV ' =—11.2 GeV ', (16)

where the contributions are from the P»(1236), D»(1512), S»(1550), and E»(1688), respectively. The
agreement is quite remarkable and implies a very weak contribution from the amplitudes above 1700
MeV. The simplest way in which this may occur is if the s-channel helicity-flip amplitude (1 —-;~(v~1 —,)
is small. Then the continuum contribution (in a nonresonant treatment) la.cks the analog of the large
second term inside the braces in (15), and can be estimated" to contribute ~ 0.1 to the left-hand side
of (15).



VOLUME )0) NUMBER 15 PHYSICAL REVIEW LETTERS 9 APRIL 1973

We can then say that the saturation of the sum rule at q'= 0, I-0 is af least as successful as that of
the Cabibbo-Hadicati sum rule. Suppose then that this encourages us to assume its validity in the
deep-inelastic region q'- —~. The neutron pole disappears and, assuming that va, = S,(v, q') scales as
v--, q'- —~ (see next paragraph), we obtain

1

J (d(o/u))[8, ((u) —8, '((u) J, o= —F,"(0)= —3.70,
0

with ~=——q'/2m v. The structure function 8,(~) can be expressed either as a Fourier transform of the
bilocal scalar form factor v, (P.x, 0, 0) appearing in the expansion"

(p'~Vq(x~0)~p)=u(p, )[v, (P x, x', t)yq —v, (P x, x', t)(Pq™)+terms in Aq, xq, P„y x, ...]u(p, )

or, equivalently, as an integral over some of the off-shell spin-flip parton-proton scattering ampli-
tudes. ' ' As opposed to the case for electroproduction, these amplitudes cannot be heuristically in-
terpreted as parton densities, or squares of wave functions in momentum space. Rather, they re-
semble overlap integrals of such wave functions for different values of proton helicity. It is easily
seen that the amplitude 8, and form factor I', are zero in the Born approximation. Then, the formula
shows that the free-field realization of the parton model is inconsistent with nature, i.e., with E, ~ 0.

Finally, it is of interest to compare the present light-cone derivation of the sum rule (11) with the
previous derivations ' using the Fubini method. ' The latter approach necessitated that the amplitudes
A, ' ' and D, ' ) [corresponding to the absorptive parts a, ') and d, ') in Eg. (2)J satisfy unsubtracted dis-
persion relations in v for fixed q' at I = 0. The t-channel analysis shows that this is a standard re-
quirement for A, . The case of D, is more unusual in that it involves the question of a trajectory
with IG = 1', even signature, and odd parity. Particles corresponding to such a trajectory do not seem
to exist. But these quantum numbers may also be reached through a P (3p cut, which has an effective
intercept n, «(0) = —,; in this case, the correctness of the sum rule may indicate that such a cut does
not couple to nucleons and/or charged isovector currents.

In summary, the purpose of this note was to demonstrate convincingly the validity at q'=0, t-0 of
one of the two sum rules derivable from the local ++ light-cone commutators and to stimulate interest
in it as a new theoretical constraint on the data. In a future publication, the kinematic details of the
reduction of the sum rule to the form (15) will be given, as well as some further discussion on its use-
fulness in the phenomenology of photoproduction.

I am indebted to Professor R. Jackiw and Dr. R. L. Jaffe for some helpful comments concerning co-
variant parton models.
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