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The recently proposed Lagrangian of a free string is quantized by means of path inte-
grals. It is shown how Veneziano amplitudes are obtained in this picture by coupling the
string with external sources.

Recently, Virasoro conditions~ have been de-
rived by studying the propagation of a free string
in physical space-time. ' For a free point parti-
cle the action is proportional to the length of the
trajectory. In the case of a string, its succes-
sive positions for different times generate a two-
dimensional surface Z in space-time, and it is
natural to choose the action as proportional to
the area of this surface. If one denotes

X=&X/& 7, X' = &X/Bo,

the corresponding Lagrangian reads2

string by considering only X as an independent
dynamical variable:

[X,(o, T),X' (o', v)]=i', tI(cr —cr'),
~ ~ (8)X-X"=0,

provided that d= 26 and that the intercept of the
leading trajectory is 1. The gauge conditions of
Ref. 4 are

x, = (2/Tr)'"P, ~

g ((X X/)2 X2X12 )1/2 (2)

0 0X'+X"=X X'=0

The crucial remark is that the area of the sur-
face does not depend on its parametrization. In-
deed, it is easy to see that the action

I (X) = f, do dr Z( X(~, ~))

is invariant under the general transformations

1(x)=I (x"),

where 0 is defined through

o -o "(o,~), ~- r( ,cr),s (5)

X&(o, r)-X&o(cr', T) =X&(cr" (o, v), 7'o (cr, y)), (6)

& "(o', &) and T"(O, T) being arb'itrary functions of
o and T. Therefore the theory has a built-in
gauge invariance. This has been shown to be the
origin of the Virasoro gauge conditions.

Let us introduce the notation

x,= (1/W2)(x, +x,),

where P& is the total momentum of the string,
defined by

P = (2m) f d(xaZ/&Xp.

It follows from (9) and (10) that X is an X-de-
pendent operator which is expressed as a bilinear
function of X. Thus the basis of the Hilbert space
can be taken as eigenvalues of X(cr) and P+ for on-
shell states.

Up to now, however, only free strings have
been considered. It is the purpose of this paper
to show that, in the same way as in the analog
model, "the dual amplitudes are obtained by cou-
pling the string with external sources. We shall
formulate the amplitudes in terms of Feynman
path integrals.

In order to see the form of the path integral,
let us consider first the following matrix element
of the propagator of the string in the Hamiltonian
formalism:

where d is the number of dimensions of space-
time. Goldstone et al. ' have shown that because
of the gauge invariance one can quantize the free

(Xt~ exp[-i (R+p')t]~X, ) exp[ip. (q; —qt)J, (12)

where 8 is related to the Hamiltonian II of the
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string in the gauge of (9) a.nd (10):

11=,' J-,'do(r'+X") =Z+p'+&OiHiO).

q is the center-of-mass position of the string, defined by

q = (2/v)"' J,
'

do X(o).

(13)

(14)

Using the relation between the operator and functional expression of the propagators we can write (12)
as

f ~ .fxyx)X(o, r) exp[i J dot'drC+2ip p t+ip'(q; —qf)J, (15)

where g is given by

g =-', (x'-x").
Let us define D by

D '= f f"&X II 5(,'[X(-o~)-X'(o ~)]2).
0, 7

then we obtain

f. ~ f ~X~X, ~X DII 5(X,(a, ~) —(2/z)" p,r)5(-,'(X-X')')exp[i Jf dodrZ+ip (q; —q~)J,
0, 7

(18)

where Z is given by (2), which is linearized as a result of the condition (X-X')'=0 as

z =-,'(x'- x"). (19)

The expression (18) is similar to the functional integral of gauge-invariant theory, except that the
factor D is not exactly the same as the Faddeev-Popov determinant 4, which is defined by'

~(x) fdic II5(x,"- ( 2/~)'"p, r) 5(-,'(2"-x"')')=1 (2o)

as usual. It is not difficult to verify that

(21)D = ~(x)[II «x(o, ~))]
O~ 7

if (X-X')2=0 and X =(2/m) '2P+v. Thus, in the functional integral there appears the factor [IIXJ as
compared to the usual Faddeev-Popov expression.

Generalizing the expression (18) we define the generating functional of Green's functions by

W, (Z) = f "fu'&x~, (x)II [2 '(X(o, v.))8(x,(o;v) —f(o, r))t(-,'(X-X')')]exp[i ff, dod, (g yj„x„)], (22)
0, 7

where f is a function of o, 7 and it fixes the gauge; &f(X) is the Faddeev-Popov determinant defined by
an expression similar to (20); and J'„ is the external source function. The integrations over X+ and X
are carried out as follows: First the integration of X+ is trivial because of the 6-functional

II 5(x,-f).
Then we choose f is such a way that 2 +J' X becomes independent of X . For this purpose we intro-
duce the Green's function N(y, y') which satisfies

(8 /Bo s /87 )+($) $ ) = l '5 ($& 5& )~ (23)

where by y we denote a point of coordinates (o, v), with the boundary condition that the normal deriva, -
tive of N on the boundary is constant. The factor in the exponent becomes independent of X if we
choose

f(&, T) = —i fdic'&(X, X')~,(X'). (24)
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Formula (22) then takes the form

W(Z) =exp[- fdydy' J (y)X(y, y') J,(y')] f ~ J nXexp[i frdo dz(g+J X)]

f" f nx II[z,-'u(!(x-x')')]~, (x). (25)
0, 7'

We now show that the last integral of (25) is 1. We remark that, in the functional integral, bz(x) is
multiplied by 5(x+-f(v, T))6(~(X-X')').' We need, therefore, to determine bz(X) only when X+=f (a, T)

and (X-X')'=0, in which case the integral which defines 6z has a contribution only from 0 =1 and is
equal to the corresponding Jacobian. Thus one gets

~,(x)IIz- = II(f'(...) -f (...))det(s. -e, ), (26)
0, 7

where det(s z s &) ls to be taken ln the functional sense. @his formula allows us to integrate tr jvjaliy
over X and one gets

f" f ux [IIg-']~, (x) IIt(';(x-x')')= l. (27)

The form we obtain is similar to the generating functional of Green's functions of quantum electrody-
na, mics in the Coulomb gauge where the exponential of the Coulomb interaction energy also appears in
front of the functional integral.

Finally, the integration over X is performed as usual and one obtains

W(Z) =exp[-,'f dy Jdy'Z„(y)1V(y, y') J„(y')]f "fSXexp(i f dvdTZ).

This formula is similar to the result of the analog model. Differences are that the functional integral
is now only over the transverse components and the Green's function N is the one for the hyperbolic
differential Eq. (23) instead of Laplace's.

Following the idea of Refs. 6 and '7, we express the integrand of dual amplitudes as quantum-mechan-
ical transition matrix elements of strings, which can be computed from Eq. (28) by choosing the appro-
priate J. We prove now that Venziano amplitude can be derived from the string model. For this pur-
pose we follow the same procedure as in Ref. 5 and compute

dT;v(u, "I )=iim f "f~zw;(z)II ', e( ,T„=-~,)IIV"(z(~, )r-Pu, p, (~, ~)), (29)
a~0 z(I, ')

where 0 s are the external momenta, E(k;2) are the self-energy factors, ' and

lim p;(o, T) = V2gb(a) 5-(r - ~;) (30)

In this way we obtain the same form of Veneziano amplitude as in Ref. 6 except that we have now the
Green's function (23) instead of Neumann's function. However, if we choose external momenta such
that no singularities appear in the integrand, we can make aWick rotation on T~; i.e., 7„-—i7„so
that we obtain the usual expression, q.e.d.

Our transverse gauge is not factorizable since the gauge conditions depend on the external source
function. However, it is possible to change the gauge to a factorizable one' defined by the condition
(x+x')2 = 0.
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A dual multiperipheral model is proposed in which duality plays an important role
alongside multi-Reggeism and unitarity. Assuming that the Regge trajectories are gener-
ated through the resonating contributions, I find that the leading Reggeon has to bootstrap
itself. Furthermore, a Pomeranchukon with intercept equal to unity is generated natural-
ly through the background contributions, independent of the strength of the coupling con-
stant. The bootstrapping potential and other interesting results of the Inodel are dis-
cussed.

It is a difficult yet compelling problem for any
model of hadronic production amplitudes to pro-
duce a reasonable total cross section. In Regge
theory this amounts to understanding how the
Pomeranchuk singularity is generated. The con-
spicuous energy dependence of the various top-
ological cross sections, in contrast with the ob-
served constant total cross sections, suggests
that the Pomeranchukon is generated by a non-
diffractive mechanism. In this Letter I propose
a model in which duality plays an important role
alongside multi-Reggeism and unitarity. The
motivation is based on the following observa-
tions: First, the success of finite-energy sum
rules' and the two-component scheme of Harari
and Freund' indicates that the dual nature of ha-
dronic amplitudes deserves serious attention in
any dynamical model. Second, a multiperipheral
approach' ' appears to be an attractive means of
imposing unitarity to the dual-resonance ampli-
tudes' (DRA's). This is because the DRA's ap-
proximate the actual amplitudes (with diffractive
components ignored) best in the multiperipheral
region, where the multiperipheral Regge model
(MRM) is best suited to handle the unitarity sum.

Thus it is very appealing to put together these
two complementary models. Before going into
detail, let us list the key features and assump-
tions of our model.

(a) Duality is incorporated into the model by
using DRA's as input amplitudes' in the unitarity
equation, and only stable particles are included
in the intermediate states.

(b) With DRA's, each amplitude can be unam-
biguously separated into a resonating and a back-
ground component.

(c) Duality forces upon us a consistency condi-
tion that the leading Reggeon is generated by the
sum of resonating components.

(d) We assume that the Pomeranchukon is gen-
erated by the sum of background components with
the vacuum quantum number.

(e) We still have the basic ingredient of all
MRM, that the amplitudes have factorized multi-
Regge behavior with a strong cutoff in transverse
momentum. There is, however, no need to as-
sum e this separately, since DRA's embody i t.

For simplicity, we ignore the inte r nal sym-
metries. It will become clear later that their
inclusion does not affect our main results. Let


