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A new mass formula for Kerr black holes is deduced, and is constrasted to the mass
formula which is obtained by integrating term by term the mass differential and which
consists of three terms interpreted, respectively, as the surface energy, rotational en-
ergy, and electromagnetic energy of the charged rotating black hole. A comparison is
suggested between a rotating black hole and a rotating liquid drop which leads to a spec-
ulation that Kerr black holes may develop instabilities.

The three-parameter, charged, Kerr solution'
of the Einstein-Maxwell equation represents a
charged, rotating black hole. These parameters
may be taken to be the total mass M, the specific
angular momentum a = L/M, and the charge @ of
the black hole, with the range

0 <a®+ @ <M>.

The surface of the black hole is the two-dimen-
sional surface formed by the intersection of the
event horizon with a spacelike hypersurface. As
Hawking® points out, the surface area of a black
hole can never decrease. For a charged Kerr
black hole the area is constant, given by the ex-
pression

A=47[2M%+ 2(M* - L? - M?Q)'~2 - @°].
On inverting this relation, one obtains the mass?®
as a function of area A, angular momentum L,
and charge @:
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Let us use the mass differential dV to define
three physical invariants of the black hole hori-
zon:

dM=TdA+QdL+%dg,

where, following Christodoulou® and Bekenstein,?®
we say T =effective surface tension, Q=angular
velocity, and & =electromagnetic potential.

The main purpose of this Letter is to point out
that the mass can be expressed in tevms of these

same quantities as a simple bilinear form
M=2TA+2QL+®Q.

This striking formula follows by applying Euler’s
theorem on homogeneous functions to M, which
is homogeneous of degree 3 in (4, L, §°).

Remarkably, 7, €, and & can be defined and
are constant on the horizon for any stationary,
axisymmetric black hole.® Moreover, the dif-
ferential and integral mass formulas given above
are formally similar to those derived for relativ-
istic stars from a variational principle.” Thus,
one would expect that the result reported above
can be extended from the charged Kerr black
hole to more general situations with matter pres-
ent. Infact, this expectation has been confirmed
by Bardeen, Carter, and Hawking,®

It should be understood that the above mass
formula does not result from integrating the
mass differential dM term by term. It is to this
method for obtaining M that we now turn.

Since dM is a perfect differential, one is free
to choose any convenient path of integration in
(4, L, @) space. In particular, one can choose a
path which will define for a charged Kerr black
hole three energy components: the surface en-
ergy E; by

E,= [*T(A",0,0)dA’;

the rotation energy E, by
L

ET=f0 A, L', 0)dL’, A fixed;
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and the electromagnetic energy E_, by
Eon= [*9(4,L, Q)dQ", A, L fixed.

These integrals may be directly evaluated using
the variational definitions

T:.L[_L %LLE_EQ_‘*}
M[327 ~ A® T 24%)
_47L _1[Q@ 21:Q3]
LT ‘I"M[z+ a

The result is most easily expressed in terms of
a new parameter set® (5, g, €) related to the set

(4, L, Q) by
n=(A/4n)"2, B=a/m, €=Q/Mm.

The integrated mass formula is then given by '

M=z1(1+€)(1l-p)7M2,
E

with
M=E+E,+E,,.

Christodoulou® already has shown by a different
approach that for an uncharged Kerr black hole
the mass decomposes into an irreducible mass
M =37 and a rotational energy M ~M;. Here
the decomposition is extended to the charged
case. It is seen also that if T is interpreted as
surface tension, then M; should be interpreted
as the surface enevgy of a black hole.

It is of interest that if one defines the moment
of inertia I of a black hole by I =L/, then in the
limit of small rotation (83— 0) and small charge
(e~0)

E, =3I
Eqpn= 3Q%0 " + 3Q°Q%.

The interpretation of T as surface tension and
© as angular velocity suggests a comparison of
general relativistic rotating black holes with New-
tonian rotating liquid drops.!® By holding (1) the
area of the Kerr black hole fixed, and (2) the
volume, density, and surface tension of the liq-
uid drop fixed, while increasing the angular mo-
mentum, one may compare the two by their one-
parameter stationary equilibrium configurations.
The qualitative behavior of the angular velocity,
angular momentum, and ratio of surface energy
to rotation energy for the two sequences is quite
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similar.!

Furthermore, the Gaussian curvature® of the
surface of a Kerr black hole develops in a re-
markably similar way to that of a rotating liquid
drop. In both cases, as the angular momentum
increases, the surfaces become flatter at the
poles until zero Gaussian curvature occurs.
Thereafter, the Kerr black holes acquire polar
caps of negative curvature, while the rotating
liquid drops acquire annuli of negative curvature
centered on the poles. The endpoint of each se-
quence occurs when a topology change takes place
for the surface.

Now in the liquid drop sequence, both secular
and dynamic instabilities occur before the Gauss-
ian curvature becomes zero on the poles.!® The
similarities discussed above, although giving
only a qualitative analogy, suggest a speculation
that instabilities may likewise develop for Kerr
black holes when the ratio of angular momentum
to mass is close to but less than that value where
zero Gaussian curvature appears,® namely

L/M2=3V3=0.866.

Work currently in progress by W. Press and
S. Teukolsky and by J. R. Ipser should settle
this question definitely.
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Equation (1) should read
V= %alZA)[(ﬁ‘ 'ﬁzA)';’A(l)]z'*‘T%B %y}[(ﬁl "ﬁm)’f’a(l)*'(ﬁ; _ﬁlA’)“;;A(l)JZ:
1y
and Eq. (3) should read

(mw® —4a)apl)=- a[A’Z)AaA,(lA’) —3a,(4)].
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