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An n-component classical spin system with arbitrary pair interactions, or a lattice
field theory, is considered, in arbitrary dixnensionality d, with spin weighting factor
exp[-w(s2)], or equiva1entiy local interactions satisfying w(y) =O(y™+) as y -0 with m
=1,2, ... and D &0. Analytic continuation in n is defined and used to show that for n =-2k
with k=1, 2, ..., m the zero-fieM free energy and all isotropic correlation functions and
cumulants take their Gaussian (or free field} values.

The critical behavior of a classical continuous
spin system or, equivalently, a lattice field theo-
ry with n-component variaMes s; = (s;")= (s "
s;('), ..., s;(")) has been studied as a function of
the spatial or lattice dimensionality d in the lim-
its (a) d-4 —for short-range forces, ' ' and for
short-range plus dipolar forces; (b) d 2o —for
long-range interactions decaying as 1/r"+' '~;
and' (c) n- ~ for both short-range, a"' and long-
range interactions. "'~ In addition the limit ~~-0
has been shown~2 to be applicable to the self-
Rvoldlng wRlk pl oblem.

Recently, Balian and Toulouse~s considered the
case r~= —2. By examining the diagrammatic ex-
pansion term by term for a, single-spin (or self-)
interaction u =uojsj~„ they developed a continua-
tion in n and showed (d) that for n=-2, in zero
field, only the quadratic or free-field terms in
the Hamiltonian play a role. Thus the free ener-
gy, and hence the exponent n take on their Gauss-
ian values for all d when n=-2. The diagrams
for the two-point correlation function 6&=(8; s~ )
were likewise shown to lead to Gaussian behavior,
whence the exponents y, v, and q take their Orn-
stei.n-Zernike values, for all 4. Balian and Tou-
louse indicated that these conclusions should hold
also for interactions of higher order than u)s)~.

SCPsf =„=—,'PPIf;;s; ~ s, ,
8 i~j

(2)

where K;, =K;;. For each spin there is a weight-

In this note we first show how to effect an ex-
pllclt analytic contlnuatlon ln the number of com-
ponents, ~i. , without recourse to a diagrammatic
expansion. This reveals rather clearly why n
= —2 plays a special role, and provides a more
transparent derivation of the Balian- Toulouse x'e-
sults. In addition our treatment shows that not
only the two-point function but also all the higher-
ordery lsotx'oplc /-point correlation ol cumulaJlt
functions in zero field exhibit Gaussian or free-
field behavior. Finally the formulation yields
these same results for n= —2~, m=1, 2, ... for
systems in which the single-spin interaction m(sa)
satisfies

ur(y)=O(y ")as y-o,
with 6&0. Thus, for example, an interaction of
the form v)sj' exhibits Gaussian behavior for
both n = —2 and n = —4. Furthermore w(y) need
not be a polynomial, so that the interaction t jsj"~

also yields Gaussian behavior for r~ = —2.
We consider explicitly a system of K splns with

reduced Hamiltonian
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ing fa.ctor

f; =f;(s;) =exp[ -w;s; -av;(s; )j, s, = P (s;")',

(4)

which is assumed to be integrable on -~&s; & for all ~; &0. The Gaussian or free-field model cor-
responds to w; -=0. The partition function is then

Z„("i(v,w) = II Jd "s„f~(s, ) exp[$C(s)].

In order to see how a continuation to negative n may be effected, "it is instructive to consider the
single-spin pa, rtition function

Z, ("'f I(w) =C„J s" ' exp[- I(s'-xo(s')j ds,

where C„=27(" "/I" (~n). To this end we suppose generally that
k

-w(y)jj — -|6(y) P & ( ~)l 0(~k+6)
t=o

as y-0. Note that when (1) holds we have

ao=1, a1 =a~= =a =0.

Using the expression (6) in (5) yields, for z )0,
k

Z, "'11(,w) = C„JO s" 'exp"(- ~s') (exp[- ur (s')] )„,ds+ (m/I()"" p (-)'g, r (-,'~+ l)/I'(-,'n)~' .
L= 0

(7)

(8)

The subtracted integral now converges down to n= —20 where, however, it makes no contribution since
C»=0 (&=0, 1, ...). The sum of terms may likewise be continued analytically in n. If we take 0=m,
only the first term survives when (1) and (8) hold, yielding

Z (-2m)(K 16) = K~/7(m =Z (-2m~(K, 0).

This is evidently independent of the properties of m and equal to the Gaussian value (xo —= 0).
This analysis of S1 " is rigorous; a similar but more tedious calculation, utilizing an expansion in

powers of E», verifies the same conclusion for N = 2 under equivalent conditions provided the deter-
minant

D~(e) = det(K) =
i l('; &;; —2&;;i (10)

remains positive. For general N, however, we present a more formal but rapid method (not unlike
that used in Ref. 9). We suppose that expansions for xo; like (6), with coefficients a;„may be extend-
ed to k =~ [as certainly true if w;(y) is a polynomial]. We then write (8) and (4) as

N

Z "'(I(, xo) = II [Jd "s, , Qa„(&/&~, )'] exp[-P(K;6;, —~K;;)s; s, ],
k, k'=1 l=0

where the differential operators serve to regen-
erate the full weighting factors. On interchang-
ing the order of summation and integration, the
integrals factorize into n Gaussian integrals on
the s;, yielding

N ~ g l -
.N nl 2

k =1 —/=0 k ——. Nl- j-
At this point the analytic continuation in n is

easily made. While the determinant DN does not
vanish (as for T exceeding the Gaussian critical
point To), there is no ambiguity. Now suppose
n = —2: the determinant DN then appears linearly
in (12), and by (10), so does each ~, . Hence the

only effective terms in the differential operators
are those with coefficients a»-—1 and a~i =0 (since
m & 1). The reason for the special role played
by n = —2 is thus obvious.

More generally, for n, = —2m the rnth power of
the determinant yields a, polynomial of order re
in each ~„so that only the coefficients a„ for
l (I can play a role; but in view of (7) these all
vanish for l )0. Consequently, we finally obtain

which is just the Gaussian result for n=-2ni.
This establishes our conclusions for the free
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energy. In order to derive the correlation func-
tions and the cumulants we simply note that

G '= (s ~ s ) = n(s "s ")=
(n)1

(14)

s' inZ, ~ "&(~„$
G 4 (sk sl k ' sl')curn

krl'

and so on for the higher-order isotropic cumu-
lants. Since, even as a functional of the K;,, the
partition function (13) takes the Gaussian value
when n= —2m, all the isotropic correlation func-
tions likewise remain identical to their Gaussian
analogs. We note, however, that an anistxopic
correlation function, such as (s,"s, s, , s„),
cannot be evaluated in this way and is, presum-
ably, not equal to its Gaussian analog (even in
zero field).

To justify the interchange of limits involved in
going from (11) to (12), attention must be given
to the behavior of ill(y) for large y. H ill(y) is a
polynomial, it is sufficient to multiply it by the
cutoff factor e "' and then let p, -0+, after con-
tinuing in w and performing the summations on l.

It is interesting to note that our evaluation of
Z~~"' holds for n =0, where it simply yields the
Gaussian result, namely, unity. For the exclud-
ed volume problem, however, we presumably re-
quire lim(n-0)[Z„"']"". This brings in 1nD~(lc)
and its powers, as the operand for the differen-
tial operators. This also happens when one tries
to develop expansions about n = —2m.
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Laboratory Observation of Slow-Mode Shock Waves
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We have identified a slow-mode shock wave in a laboratory experiment. We also pre-
sent a model of the novel method of launching the shock.

There have been many reports of laboratory ex-
periments which produce fast-mode shock waves
propagating into plasmas containing magnetic
fields of various magnitudes and directions. '
Such shocks are associated with the steepening
of fast-mode magnetohydrodynamic (MHD) waves.
Slow-mode MHD waves can also, in principle,
steepen into shock waves. Space observations"
have revealed discontinuities in the solar wind,
which satisfy the conservation relations for such
slow shocks. We present here what we believe

to be the first laboratory observation of slow-
mode shock waves.

The main differences between fast and slow
shocks are described by Kantrowitz and Pet-
schek. ' Density increases across both, but the
transverse component of magnetic field increases
across fast shocks and decreases across slow
shocks. Thus in slow shocks both magnetic and
kinetic energy are converted into thermal ener-
gy, and it is the thermal pressure which drives
the shock against the magnetic back pressure.
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