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We show that the form factors of the strangeness-changing current are renormalized
in first order, rather than second order, in the symmetry-breaking parameters if the
chiral symmetry is realized by Nambu-Goldstone bosons. The first-order renormaliza-
tion is explicitly calculated for the meson and baryon form factors.

In this note we re-examine the celebrated non-
renormalization theorem of Ademollo and Gatto'
and Behrends and Sirlin' in the light of recent ob-
servations on perturbation theory about a Nambu-
Goldstone symmetry. ' The nonrenormalization
theorem asserts that the vector form factors of
currents at zero momentum transfer, whose as-
sociated charges are the generators of a symme-
try group, remain unrenormalized up to second
order in the symmetry breaking. The implication
of this theorem '.hat the renormalization effects
are therefore small —is crucial to establishing
contact between the Cabibbo theory of weak inter-
actions and experiment.

This theorem is certainly true in the case that
the symmetry limit is realized in the usual way
in which the states are irreducible representa-
tions of the symmetry group. If, however, the
symmetry limit is realized by ground-state
Nambu-Goldstone bosons, we find that the form
factors a,re renormalized to first order in the
symmetry-breaking parameters.

We now illustrate this remark using the lan-
guage of the (3*,3)$(3, 3*) model, although the
result is actually model independent. Consider
the Hamiltonian density

a(x) =a,(x)+ e,u, (x)+ e,u, (x),

where H, (x) is chiral SU(3) SSU(3) invariant and
u, ,(x) transform like members of the (3*,3)
Eb (3, 3*) representation. We assume that as the
symmetry-breaking parameters fp and &, vanish,
the symmetry of &p ls realized by an octet of
massless ground-state pseudoscalar bosons. If

f,(0) is the K„decay form factor of the strange-
ness-changing current between a p and K, then
with f,(0) = 1+ e,'F(eo, e,) we find F(e„0)-r/e,
+s/e, '~'+ ~ ~ ~ as e, -0, with r a known constant.
Consequently f,(0) = 1+ O((e, /@) e,) and the renor-
malization occurs in first order.

It is apparent from these remarks that if we
consider perturbation theory in e, about SU(3')

then the correction is of O(e, ') in accord with the
usual theorem. However, if we consider pertur-
bation theory about SU(3) CESU(3), which may be
as good a symmetry as SU(3) (e, /e, = —v 2), then
the correction is properly of order (e, /e, )e,- O( s,)—first order.

We indicate below how this result is obtained.
We also calculate the renormalization, to first
order, in a model-independent way. For the

f,(0) form factor one obtains, with f,=0.96', /~2,

5(v E' —v.')'f«(0) = 1 —
3$47pf,(2, ,

)
——0.98

which is numerically only a 2% renormalization.
We have also examined the renormalization for
the baryon form factors, where this first-order
renormalization is at most 7%. Our results do
not alter the beautiful agreement of the Cabibbo
theory with experiment and support the usual as-
sumption of ignoring renormalization effects.

We follow Fubini and Furlan. ' If we consider
the matrix element of [F„F ]=I,+ ~ Y, F, =F,
+ iF, with F, a generator of SU(3), between
ground-state mesons states IM), then we obtain
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a sum rule of the form

(l. +-,'V}„„=g„,[IZ - '(0)l'-l~, - '(O)l']+ f,",ds(s-i „')-'g„(2,} g (p

x [l(n I
8 „v„(0)lM& I

' —1&n la „v„'(0}lM& I
'],

where P'=s. Here I"," ~ (0') are the form factors we wish to consider; they arise from saturating the
commutator [E„F ] with the pole terms. The continuum contribution is a weighted integral over the
cross-section difference of the scattering of current divergences from the meson M and represents the
renormalization effect. That the continuum term contains the square of matrix elements of B„p„,
which are first order in symmetry breaking, is the origin of the usual nonrenormalization theorems.

We have found that in the chiral SU(3) SU(3) limit, in which the ground-state mesons become mass-
less, there is a class of states contributing to the continuum which is uniquely singular. These states
are represented by a Cutkosky diagram and are illustrated in Fig. 1.

The singularity is due to the combination of two effects: (i) The positions of the two meson poles ap-
proach k' = 0 in the chiral limit, and (ii) the boundary of the physical region of k' approaches zero in
the chiral limit because M,'-q2=0. If the ground-state meson M, were replaced by an object of fixed
mass v s, go, then the meson poles would not approach the physical region and there would be no singu-
larity. Hence, we would not expect a singularity if the divergences of vector currents were replaced
by the divergences of axial-vector currents, nor would we expect to increase the singularity by con-
sidering several meson poles, as in a multiperipheral model.

From the diagram in Fig. 1 we need consider only In)= ln'; M, ), so that

(n'; M. l B„y„'(0)lM) = Q„c,'b "~ (n'I z„(0)IM)/(k' —M, '),

where c,"b "~=(M, II s„v„'(0)IMb) can be parametrized in terms of the known ground-state meson mass
splittings. Here Z (0) is the meson source. After explicitly extracting factors proportional to SU(3)
breaking (e,'}, we will evaluate the continuum integral in the SU(3) symmetry limit (e, -0) and then
take the SU(3) ISSU(3) limit (e, -0). As we will see, the continuum integral diverges like 1/e, -1/p'.

After some manipulation one finds for the contribution of the states shown in Fig. 1 to the integral in
the sum rule (2}

P) (s p, ) b'+b (2P) 4s & (k p, )
M~~ Mc

xpv'(k+p -p„,)(n'l~~ (0)l M&*&n'I ~~ (0)l M&.
Fl

q =

q-k M

8 V

s=(q+p)' k&~ Mb
n'

Mc)& k

~ s~=(k+ p)

FIG. 1. Cutkosky graph contributing the most singular part of the renormalization in the chiral limit. The lines
labeled M represent ground-state mesons which all become massless in the symmetry limit.
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The kinematics are illustrated in Fig. I and

A(sg, s2 sg) = sg +82 + s» 2sys2 —2sysg 2s2s»; s2=(k+p)', s =(g+p} g = 0, p
k' = p'+ s, —(s + p'}(s+ s, —p'}/2s+ (s —p'}A'i'(s, s„p.'}z/2s.

Here p' = —,'(2p~'+ p, '} is the average meson mass (having eliminated p „' by the Gell-Mann-Okubo
formula} and

(C Al»NaC 3dc N» —C s»Ala C Nc Ala~}.
Alc 4 I- + +

In the above expression we recognize

ImA" »™(s„k') =Q„.5'(k+p -p„.)&n'~& (o) ~M&*&n'~&, (o) (M)

as the absorptive part of the forward, virtual meson-meson scattering amplitude. If we expand this
amplitude, ImA~» ~»(s„k') = ImA™»' »(s„0)+ O(k'), we find that the terms of O(k') do not contribute to the
most singular part of the renormalization (for the same reason we have ignored any k' dependence of
C,"»"o). With ImA "»»(s„k')= ImA"» "~(s„0)we can explicitly do the z integration in (3) with the re-
sult

ds ~"(s, s„p')
(s —p, ')'ds, g B „ ImA"»" (s„0

P ~~ z e ' 2+»
c

The important factor of 1/p' has already appeared as a result of the z integration, which is done exact-
ly, over the singular meson propagators (k' —p, ') '. For the integral over s in the above expression
one obtains —,

' (s, —p') '[1+O(p)], so that the final result for the singular piece as p. '-0 is

The remaining integral in this expression is precisely the integral in the Adler sum rule for meson-
meson scattering, and hence we can evaluate it exactly. It is this feature that permits a direct evalua-
tion of the renormalization effects to first order.

Putting all this together we find for the sum rule (2)

2

This result implies that all the meson decay form factors are renormalized from their symmetric
values f,'(0) according to

f+ (0) 384m'f, '(2p, ~'+ p, ') (4)

This is a 2% effect; about the higher-order corrections O(e, '/e, ' ') we have nothing to say.
A similar procedure yields the leading-order renormalization of the baryon form factors. The ma-

jor difference between the baryon case and meson case is the presence of baryon-pole terms in the
sum on the states n in the Cutkosky diagram. This pole piece, however, can be explicitly evaluated
in terms of the f and d coupling of the pseudoscalar mesons to the baryons. The sum on all other
states n' can be again reduced to the Adler-Weisberger integral' and explicitly evaluated. Our results
are

—(3) 'E, (A- p) = 1+ C[1+,—,g„(45 —60n+ 56n')], —E, (Z - n) = 1+ C[1+—,',g„'(45 —180n+ 144o.')],
E,(:-'- Z') = 1+C[1+,—',g~'(45 —36n')], (—', )'~E, (= —A) = 1+ C[1+—,',g~'(45 —120n+ 116n')J; (5)

C = —5(&E' —
V ) /384~'f, '(2V E'+ p, '),

and e is related to the f/d ratio of the meson-baryon coupling by f/d= (1 —n)/n, n= 0.633+0.012.'
The corrections to (5) are of O(e, '/e, ' '). To this order Eqs. (5) imply a sum rule

~6[E,(A-p)+ E,(:- -A)]+ E,(Z -n)+ E,(:-'-Z') =0.
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Numerically these renormalizations are at most 7%%uo. We find from (5) that (3)'~'E, (A-p) = —0.934,
E,(Z -n)= —1.000, E, (:-'-Z+)=0.930, and (-',}'~E,(- -A}=0.957.

The major conclusion of this study is that there is a class of dangerous box Cutkosky diagrams
(shown in Fig. 1) which introduce several singular ground-state meson propagators in the chiral-sym-
metry limit. These diagrams are the only ones that in this application can produce the 1/p, or equiv-
alently 1/eo, singularity to destory the naive nonrenormalization theorem. Such effects are, however,
not large numerically.

Other applications of these ideas will be presented in a more detailed report.
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