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Lattice-Gas Interface Structure: A Monte Carlo Simulation
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The (100), simple-cubic, lattice-gas interface structure has been simulated by Monte
Carlo methods. For the interface width L we find L =(1.05+0.04) (1 - 7/7,)"% %, in the
range T 2 0.5T,. This is larger than the bulk correlation length { by a factor of ~ 3.

We have recently described the results of a
Monte Carlo simulation of the (100) interface be-
tween a simple-cubic Ising solid and its vapor.!*?
In that work, all atoms were required to be con-
nected to the bulk phase through the underlying
(100) interfacial layer. This requirement served
to eliminate the critical point by maintaining the
“solid” and “vapor” densities at 1 and 0, respec-
tively. In this Letter we describe a simulation in
which the “solid” phase is not required to be ful-
ly dense; i.e., a simulation of the classical Ising
or lattice-gas system. The results of this study
allow us to assess the effect of variable solid and
vapor phase densities on interface structure, and
constitute, to our knowledge, the first such re-
sults obtained by direct simulation of the inter-
face in a two-phase system near its critical point.

The simulation was accomplished via the classi-
cal importance sampling method of Metropolis
et al.®> The system consisted of 28 (100) layers
of 20 X20 dimensions. Periodic boundary condi-
tions were employed within each layer and the
top (layer 28) and bottom (layer 1) were main-
tained with 0% and 100% occupancy, respectively.
An initial configuration was produced by filling
half of the remaining sites with atoms. A Mar-
kov? chain of configurations was produced from
this initial state by Guttman’s* pair exchange tech-
nique. In this scheme, a virtual exchange of ran-
domly selected “atoms” and “vacancies” is con-
sidered. The exchange is executed whenever
exp(- Ane/kT) is greater than a random number
between 0 and 1, where An is the change in the
number of solid-solid bonds produced by the ex-
change, and € is the bond energy. In general, 5
x10% configuration chains were generated for a
given €/kT, and equilibrium values were obtained
by averaging the results of the final 2x10° con-
figurations. A smaller value of €/kT was then
selected and the entire process repeated, begin-

ning with the final configuration of the preceding
chain. The entire simulation was repeated for a
system identical to the first, except that the in-
terface was eliminated by reversing the interac-
tions across a dividing surface between the four-
teenth and fifteenth layers. Atoms adjacent to
this surface must bond with vacancies on the oth-
er side. This scheme yielded two phases corre-
sponding to the bulk solid and vapor which were
uniform up to the dividing surface. Interfacial
excess quantities were obtained directly by sub-
tracting the values of this system from those of
the system containing the interface.

Typical interface-density and energy-density
profiles for €/kT =1.0 (e/kT,.=0.887)° are shown
in Fig. 1. As is apparent, the local number den-
sity of atoms, X;, agrees well with the Padé ap-
proximate value, X, of Essam and Fisher® in
the region just beyond the completely solid bound-
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FIG. 1. Density (X;) and energy density (E;) profiles
for a simple-cubic (100) lattice-gas interface at €/kT
=1. The data points are approximately 20 in height.
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ary layer, and decreases smoothly to the homo-
geneous vapor phase value X, =1-X_.. The local
energy density E;, obtained by counting the num-
ber of solid-vacancy nearest-neighbor pairs in
each (100) layer, exhibits a peak at the interface
position and is symmetrical about ¢=14.5. Fig-
ure 1 also shows that, although the density of the
“pbackground” reference system changes abruptly
between layers 14 and 15, the energy density is
uniform throughout the system.

Following Cahn and Hilliard,® the interface
thickness may be defined as L=(X ;~X)/(X,,
-X,;), i.e., as the width given by a straight-line
extrapolation of the density profile at mid-density
to the solid and vapor homogeneous phase densi-
ties. As is well known, L« (T,—T) in critical
systems. The classical Van der Waals—Cahn-
Hilliard®'" theory gives f=3, while Fisk and Wi-
dom’s® nonclassical extension of it gives f~0.64.
Fisk and Widom’s result arises because they
equate the interface width, L’, with the correla-
tion length £ in the one-phase nonclassical fluid,
for which f=v, the critical exponent for £. (L’
as defined by Fisk and Widom is somewhat larg-
er, by a factor of ~5, than L as defined here.)
Our simulation results are shown in Fig. 2 as a
plot of X,,—X,, versus kT /e, where a linear re-
lationship is clearly suggested. Assumption of
linearity leads to L/a=(1.05+0.04)(1 - T/T,) "°°°,
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FIG. 2. The kT /¢ dependence of the maximum density
gradient, Xy, — Xj5, of the simple~cubic, lattice-gas in-
terface. The data points are approximately 2¢ in height.
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where Essam and Fisher’s numerical value, &,
for the X ;~ X, exponent is employed, and a is the
lattice parameter. The exponent — 0.69 agrees
reasonably well with Fisk and Widom’s suggestion
of —0.64, as well as with the experimental re-
sults of Gilmer et al.,® Huang and Webb,'° and
Zollweg, Hawkins, and Benedek!! for a binary
liquid mixture and pure xenon, respectively. The
magnitude of L is found to be larger than £=0.32
x(1=T/T,) %% as estimated by Fisher for the Is-
ing model.'? Moreover, the experimental deter-
minations of L and the theory of Fisk and Widom
agree in suggesting that L is somewhat larger
than the bulk correlation length £, This simula-
tion thus lends support to both. We do however,
anticipate that L, as computed by Monte Carlo
simulation, will be system-size dependent. In
particular, large systems allow long-wavelength
surface perturbations, which may cause a dra-
matic increase in L. We expect that our 20 x20-
system results are comparable with experiment
since the long-wavelength perturbations in a real
system are suppressed by gravity.!® Further dis-
cussion of this topic will be included in forthcom-
ing detailed reports of our simulation results for
this and several interface orientations in the face-
centered-cubic Ising system.

The interfacial excess energies, E, obtained
here are compared in Fig. 3 with our previous
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FIG. 3. The kT/¢ dependence of the interfacial ex—
cess energy, £, of the simple-cubic, (100), lattice-
gas interface. The error bars are 2¢ in height.
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results for a system constrained to maintain X ¢
=1 and X, =0. As expected, these agree in the
region kT /e <0.8 where X ,— X, =1 for the Ising
system, but differ considerably for higher 2T /€.
This behavior is expected since for the constrained
system E -~ « as €/kT -0, while for the Ising sys-
tem, E~0as T —-T, The result of Fig. 3 may

be contrasted with that for a two-dimensional lat-
tice-gas interface, for which E decreases smooth-
ly with temperature to a finite value at 7=7,."*
Our results are similar in form to the classical-
theory results®'’; i.e., E increases to a maxi-
mum at some T <T,, and then decreases to 0 at

T =T, The interfacial free energy o is propor-
tional to (1 -7/T,)" in the Ising system where the
exponent u is given as 2 by the classical Van der
Waals—Cahn-Hilliard theory,®'” and as 1.22-1.33
by Fisk and Widom’s nonclassical treatment.

Since

do/kT
OC mmameremms
de/kRT’

we obtain from the data in Fig. 3 a value for u
between 1.27 and 1.53, in general agreement with
both experiment® ' and nonclassical theory.®

We are indebted to P. C. Hohenberg, F. H.
Stillinger, and J. D. Weeks for helpful discus-

sions.
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Direct observations of the magnetic-field distribution in thin films of Pb, Sn, and In
indicate that the critical thicknesses separating intermediate-state and mixed-state be-
havior in these systems are accurately given by theoretical calculations and are much
lower than has been believed on the basis of critical-field measurements.

A fundamental characteristic of the equilibrium
state of a superconductor is the magnetic struc-
ture which arises in an applied magnetic field
H,. Depending on the material and geometrical
factors and on H,, the equilibrium state can be
perfectly diamagnetic or only paritally diamag-
netic as in Abrikosov’s “mixed state” of single
quantum fluxoids (type-II superconductors) and in
the coarser “intermediate state” found in type-I
superconductors of finite dimension. The differ-
ences between the mixed and intermediate states
is fundamental to the distinction between type-I

and type-II superconductors, but, as Tinkham®
pointed out, sufficiently thin films of any mater-
ial should exist in the mixed state even if thicker
specimens of the same material exhibit inter-
mediate-state behavior. One expects, therefore,
that thin films made of a type-I material and
having a Ginzburg-Landau parameter k<1/v2
will be type-II superconductors for thicknesses
below a critical value d,. Experimental studies
of this interesting change in magnetic behavior
in thin-film systems have involved macroscopic
properties of these systems and have been dif-
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