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However, the products P„R should be equal' if
the two sets of data are consistent. Using this
criterion, the nuclear deformation parameters
were calculated to be P, =0.279+ 0.009 and P~"
= 0.050+ 0.009 for a radius parameter R = 6.093
fm. These values are within the uncertainties
in agreement with P, and P~ .
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FIG. 2. Calculated excitation probabilities of the 4+

level for various charge and optical-model deformations
(see text). The results are normalized to the expecta-
tions of the pure Coulomb-excitation theory.

charge and optical-model deformation parame-
ters. The pure Coulomb-excitation measure-
ments are almost insensitive to the sign of P4

as indicated by the convergence of the various R4
functions at 14 MeV.

The P, and P,
"obtained in our measurement

together with the results of Ref. 1 are given in
Table II. These values are different from P,
and P, since the radius parameters are unequal.
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Higher-Order Correlation Properties of a Laser Beam*

S. Chopra and I. Mandel
Department of Physics and Astronomy, University of Rochester, Rochester, ¹u1'orh 14627
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The intrinsic third-order intensity correlation function of a laser beam has been mea-
sured by a digital correlation technique, for a He:Ne laser operating near threshold. The
results are compared with some recent calculations of Cantrell, Lax, and Smith and are
found to be in good agreement.

In recent years there has been considerable in-
terest in the correlation properties of laser light,
particularly when the laser is operating near its
threshold of oscillation. However, with one ex-
ception, ' all correlation measurements have been
confined to the second-order intensity correla-
tion function, and the higher-order correlation

properties have received little or no attention. '
The reason is not hard to find. Correlation ex-
periments of the third or higher order involve
measurements of the arrival times of three or
more photons, and require an order of magnitude
more electronic data storage and analysis than
the corresponding second-order problem. At the
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same tirr. .e great measurement accuracy is need-
ed if the intrinsic higher-order correlations are
not to be masked by lower-order ones. The theo-
retical problem of calculating the higher-order
correlations is correspondingly more formidable.

Recently Cantrell, Lax, and Smith' succeeded
in computing the intrinsic higher-order correla-
tions of the laser field near threshold, on the
basis of the nonlinear oscillator model of the
laser, "in which the optical field is taken to obey
a Langevin equation of motion driven by Markof-
fian random forces. Experimental confirmation
of the results of these calculations provides a
test of the laser model that is significantly more
searching than previous tests. '

We have recently developed a new technique'

for making higher-order correlation measure-
ments that is considerably more accurate than
previous methods, such as those of Ref. 1. With
the help of this technique we have succeeded in
determining the third-order intrinsic intensity
correlation function of a laser beam, at different
working points of the laser, corresponding to
values of the pump parameter a of 0, —1, and
—2. The results constitute the first direct veri-
fication of the higher-order predictions of the
nonlinear oscillator theory of the laser.

From the Fokker-Planck equation for the laser
field in the steady state it follows that the joint
probability density ps(V„t; V„t+ T; VR, t+ T') for
the field to have complex amplitudes V~ at time t,
V2 at time t+7, and V, at time t+ T' is given by

PR(v~, t;VR, t + T&VR, t+ T ) =P~(vg)G(V2, vg, T)G(VS, VR, T —T),

where p~(v) is the probability density for the field at any time. and G(V„V2, T) is Green's function for
the process. The latter function can be expanded in terms of the eigenvalues and eigenfunctions of a
certain one-dimensional Schr5dinger equation, "and then evaluated. Once pa(v~, t;V2, t+T;V„t+ T') is
known, the third-order intensity correlation function follows from the integral

(I (t)I(t+ T)I(T+ T')) = fl V, I'I v2I'I VSI %.(v„t;v„t+T;v„t+ T ) d'v, d'v, dmv, .
In order to measure (I (t)I(t+ T)I(t+ T')) for the laser beam, we make use of the fact that when the

beam falls on a photodetector, the joint threefold probability P~(t, t+ T, t+ T') dt dTdT' of photoelectric
emissions at times t, t+T, and t+ T', within dt, dT, and dT', respectively, is given by "

P,(t, t + T, t + T') dt d T d T' = (N CS)'(I (t)I (t + T)I (t + T')) dt d T d T',

where u is the quantum efficiency of the detector and S its illuminated surface area. It is clear, there-
fore, that by repeatedly recording the pair of time intervals T, T, and making a two-dimensional histo-
gram of the observed values, we can obtain the third-order intensity correlation function. In practice,
not all the observed correlations of arrival times are due to intrinsic third-order processes. If we
introduce the normalized correlation functions defined by

(T) =—(bI(t)AI(t+ T))/(I), A. (T, T'):-(bI(t)bI (t+ T)&I(t+ T'))/(I),
we can express Eq. (3) in the form

(4)

I (t t+ T t+7') =(ncS(I))'[l+ ~'"(T)+~'"(T')+~'"(T'- T)+~"'(T T')) (5)

which shows that d~'(T, T') can be derived from measurements of P, (t, t+ T, t+ T') only after the effects
of second-order correlations have been subtracted out.

The apparatus used for the experiments consists of a He:Ne laser operated at 6328 A controlled by a.
photoelectric feedback arrangement that allows it to be operated at any working point below, at, or
above threshold. ' The laser beam is filtered and passed to a beam splitter, after which the two beams
are detected by two photomultiplier tubes. After amplification and pulse shaping the photoelectric puls-
es are passed to the inputs 1 and 2 of the correlator.

The appearance of a pu1se at input 1 at time t, the start pulse, initiates a counting sequence, such
that the arrival times t+ v, t+v', t+7", etc. of subsequent pulses at input 2 are recorded. In effect
the pulse at input 1 starts a clock, whose output pulses are counted by a set of binary-coded decimal
counters, each of which is stopped in turn when pulses arrive at input 2. The counters therefore pro-
vide a measure of the time intervals T, v', v", ... in digital form. The two-dimensional array of pairs of
numbers r, T', v, T"; v', v"; etc. , is then mapped onto a one-dimensional array, which is stored in the
memory of a multichannel analyzer. Thus, the combination 3,7, for example, is stored as the single
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FIG. 1. Results of measurements of A&3l(7;&+7") to-
gether with their standard deviations, for the laser op-
erating at threshold (a =0). The solid curves were cal-
culated by Cantrell, Lax, and Smith (Ref. 3).
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FIG. 2. Same as Fig. &, but with a=-l.

number 73. The counters are then cleared and the sequence is ready to be initiated by another start
pulse. The apparatus is described more fully elsewhere. In practice the time intervals were regis-
tered in multiples of 5 @sec, which is just about adequate for the correlation times of the laser in-
volved.

When the dark counting rates x, and x2 of the photodetectors are taken into account, it may be shownv

that the expected number of events»(r, r') registered in the channel corresponding to a pair of time in-
tervals w, v' is given by

(»(~, ~')) =»,(Zg~)'[1 + e,e,d"(~)+ e,e,d"(~')+ e,'d"(~' ~)+e,-g,'d"(~, ~')]

Here n, is the number of times the counting sequence is initiated, Av is the digitizing time interval,
R~ and g2 are the mean counting rates in the two channels, and

8, = (z, ~,)/z„e, = (ff.,- r,)/ff, .
Some limitations on the counting rates need to be observed with this equipment, ' but they are far less
severe than the limitations imposed by the use of time-to-amplitude converters. ~3

In order to make contact with the computed results of Cantrell, I ax, and Smith, who expressed all
times in dimensionless form, as is customary, it was necessary first to measure the intensity corre-
lation time T, of the laser at threshold (a = 0). As usual, the laser threshold is identified by the fact
that the value of the normalized second-order correlation function 8"(0) at zero time delay is s/2 —1
= 0.571 at threshold. ~' With the laser set to work at threshold, the correlation time T, (a = 0) was then
determined from the measured values of d"(v). This provided the required time scaling parameter,
according to the relation4'

normalized time = (measured time) && 0.171/T, (a = 0).

The value of the pump parameter g for a different
setting of the laser was identified from the mean
counting rates of the detectors via the relation"

(I (a)) v w a exp(- a'/4)
(I (0); 2 1++(-'.a)

l where 4(~) is the Gaussian error integral.
The results of the measurements are presented

in Figs. I, 2, and 3, together with the theoreti-
cally predicted values calculated by Cantrell,
Lax, and Smith. The curves are plots of the
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FIG. 3. Same as Figs. 1 and 2, but with a =-2.

function A("(7,7+7") against 7", for several dif-
ferent values of 7. In practice (n(v, 7')) was mea-
sured to an accuracy of about i%, and the much
larger statistical uncertainties of ) (7;7') are
the result of the multiple subtractions that are re-
quired in order to obtain A. (r, 7') from Eq. (6).
Theoretical values of X a (7) were used in Eq. (6),
but the validity of the predicted form~' of 8"(7)
has been confirmed in separate experiments. ~~

Within the statistical uncertainties the experi-
mental and theoretical values are in good agree-
ment, and the higher-order p"~Aictions of the
nonlinear oscillator theory of the laser are well
confirmed.
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