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scattered into the crescents. Presumably this
tends to straighten out the layers. McMillan'
observed an increase in layer spacing in a smec-
tic A. with decrease in temperature. For fixed
slide spacing, a decrease in temperature would
thus produce a compressive stress, and we do
observe a decrease of scattered intensity on cool-
ing our samples. On the other hand, stresses
of opposite sign, such as allowing the slides to
move apart, are always accompanied by a dra-
matic increase in the scattered intensity and,
therefore, distortion of the layers. Both revers-
ible and irreversible distortions upon expansion
have been observed. For sufficiently weak and
slow expansion, the excess scattered intensity
disappears when the expansion is stopped. How-
ever, continued alternate squeezing and expan-
sion of the sample always results in a gradually
increasing level of static scattering, which, mi-
croscopic study shows, is associated with en-
hanced static surface defects. These observa-
tions suggest the possibility of acoustic detection
by expansion-induced deformations and surface
defects in the smectic and cholesteric plane tex-
ture.
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The specific heat is calculated in the transition region for an extreme type-II bulk su-
perconductor [zero-temperature Ginzburg-Landau (GL) coherence length $(0) = 48 A,
dirtiness parameter $0/l 120, GL parameter z = 67] for various values of applied mag-
netic field H, and compared with previously published data. Nonlocality is neglected
and the quartic term in the GL free-energy functional is treated in a Hartree approxima-
tion. The calculated and measured transitions broaden with increasing H, the latter in a
manner suggestive of an approach to the theoretically predicted one-dimensional form.

There has recently been both theoretical' and
experimental' interest in the question of a possi-
ble magnetic-field-induced reduction of effective
dimensionality in super conductors. As noted by
Lee and Shenoy, ' application of a magnetic field

to a bulk superconductor can lead to effective
one-dimensional behavior in the fluctuation spe-
cific heat near the critical temperature T„(H).
In the presence of the field the order parameter
is expa. nded in Landau orbitals (instead of plane
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waves) indexed by "quantum" numbers n and Q, .
Near the transition the n = 0 term dominates the
fluctuation contribution to the thermodynamic po-
tential, leaving only Q, to be summed, as in a,

one-dimensional (1D) system. The specific-heat
calculation of Ref. 3, however, neglected the
quartic term, describing fluctuation interactions,
in the Ginzburg-Landau free-energy functional
F[(j. The resulting expression therefore di-
verged near the critical temperature, preventing
comparison of theory and experiment in the vicin-
ity of the critical region. The simple theory pre-
sented here extends the previous calculation' into
the critical region by treating the quartic term
in F[(]in a self-consistent Hartree approxima-
tion investigated by Marcelja' and others. ' ' (The
alternative 'Hartree -Pock" approximation' leads
to difficulties in the specific heat and was there-

fore rejected. ) The calculated curves are then
compared with previously published data of
Barnes and Hake. 9 '0 (We note that in zero mag-
netic field, the quartic term can be treated ex-
actly for a one-dimensional system. '~ Our con-
cern here, however, is with the influence of the
field in broadening the transition in a bulk super-
conductor; that is, with three-dimensional sys-
tems which "look one-dimensional" in a neighbor-
hood of the upper critical field curve. )

Two recent papers ' have emphasized that in
the presence of strong magnetic fields, higher
orders in p —2eA/c must be included in F [gj, in
contrast to the usual expansion to second order.
However, it was also found" "that such non-
locality effects are unimportant in very dirty
superconductors, it being suggested in Ref. 13
that nonlocality effects are measured by h/(1
+ g, /l)', where'

h = $(0)'(2eH/hc) =H[- T, (BH„/BT) ] ', (1)

in which $ois the BCS coherent@ length, I is the mean free path, $(0} is the GL zero-temperature co-
herence length, T„is the zero Htrans-ition temperature, and H„is the upper critical field. For the
system considered here, '" h(1+ (,/I) '=10 ' [](0)=48 A, (, =600 A, l=5 A, (BH„/BT)r = —34.1
kG/K, H„(0)=63 kG, T,„=4.246 K, h =6.9 x10 ' H]. Hence we have used the usual local theory. '""

The calculation proceeds from the functional integral expression for the partition function, Z =2JDg
xexp(- pF [g]), where in the absence of a field'

PF[g]=NOVkBTQ@!(o! [e+ $(0) Q ]+(bkqT/2)Q~. gq (o $q (o o o (i=1 2 3),

The go are Fourier components of the order parameter, N, is the single-spin-state density at the Fer-
mi surface, V is the volume, &=in(T/T„), and 5=N, V['tg(3)/8m']=0. 106N, V. The Hartree approxima-
tion reduces Eq. (2) to

pF [q!=N. Vk BT&,I g, I'[.+ g(0)'q'+ 0.106g, &I q, I'&] —(»,T/2)(g, &l q, l'&)'

We define the renormalized temperature shifts

q= ~+ 0.106g,&l (,I'&.

The self-consistency condition accompanying Eq. (3) then becomes

71
—e = (0.106/NOVk B T)Q~ [q + $(0)'Q'] '. (5)

If one uses Eq. (3) in the calculation of Z, then the thermodynamic potential, kBT InZ, and-specific-
heat difference ~C= C, —C„may be obtained. The latter is given by

AC(T) =(k B/V)[s(T) '+ 0.106/N, Vk~T] ',

where

@T)=Z, [n+ ((0)'0'j '.
In the presence of a, magnetic field the Q summation in s(T) is expressed as go-(2AgH/2ghc)g„
(A is the area of the sample transverse to the field H) and $(0)'Q' is replaced by g(0)2Q, '+ 2h(n+ —,').
Evaluating the Q, sum as an integral yields

(6)

s(T, h) =
8 0, g (71„+2hn) '"= [Vh/8m/(0)'js(T, h) (8)
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in which i)„=i)+k. The specific heat, Eq. (6 and the r
come

an e renormalized temperatur h'ft, Ees i, q. 5), be-

~C(T, k)= ' s(T k) '+
8m $(0)' ' 8 mN, $(0)'k, T

0.106I
~ ""'4.N. )(0) k, T „&(&"'""' (10)

Equations (8), (9), and (10) are the basic results
of the present theory. Neglecting the fluctuation
interaction by setting g = 0 in Eq. (2) r d

o q. (8) of Ref. 3. The field-induced reduc-
tion of effective d''ve dimensionality is manifest in the
k dependence of s(T, h): (1) For k «q, s T, k
converts to an integral s( T, i't ) -k 'ti, and
aC reduces to the zero-field 3D result; (2 for

-3/2
Um~ s

, and aC acquires the temperature depen-
dence of a 1D superconductor.

At this o'p int we note an important limitation of
the present theory: The critical-field curve
a &Z'~ is r& is reproduced only for weak fields, h, «1.
This results from our use f gy0~'

Q approximation to the zero-freque- requency pair

energy functional, Eq. (2). In particular, the
n previous approx-critical temperature in this and

imations is given by e(T„)+k=0or T„=T,
x exp(-k), which is clearly incorrect for lar e
Furthermorore, the present theory neglects the

c or arge h.

experimentally observed paramagnetic lim ta
ion, '"which tends to reduce" T (H). Th

order to
us in

r o compare the shapes of the predicted
ure, we have solvedransitions with those measur d

q. (10) using e +h=l (njTT„),with T, the ex-

tro fittin
perimentally measured value obt '

d b
ropy fitting procedure, ' as opposed to the incor-

rect theoreticalcore ical value. We do not believe that the
widths of th e predicted transitions are signifi-

the th
cantly changed thereby. The discrepan b twancy e een

e theoretical and experimental T„qh~values
reached a maximum of 8% at 29 kG, of which
about 4%%uq is apparently due to paramagnetic limi-

ion.
The calculated 6C(T, k) curves are shown in

Fig. 1 along with the experimental C„(T)curves
of Barnes and Hake' for Ti-16-at ~

f' st 100irs 0 terms of the pg sum were included in

, an approximationonly the n=0 term of the sum an ap r ' t
w ic was checked at 3 kG and was found to in-
troduce only a slight discrepancy in cornin comparison

i e q„values resulting from keeping 100
terms of the sum. Aside f th d'rom e iscrepancy
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FIG. 1. Specific heat difference, 4C =C —C
tern r

s n& versus

field H, as ive
pe ature T for various values of 1 do app ie magneticie, as given by the present theory, the theory of

Bef. 3, and the data of Bef. 9. Th e dashed line (Lee-
i e cavy solid line res-Shenoy theory) merges with the h

ent theory) for T well above T (H). The z
in e present theory stops abruptly at 4C =1.43C„

'
n emperature Tat a slightly shifted zero-H transition tern e t

=4.2456 K (critical exponent = —1;e=—;see Ref. 6). The
data points are the observed s
elf lc h

ve superconducting- state spe-
ci ic eat Cs values minus th

eat „=yT+ T'
he normal-state specific

least-s uar
, w ere y and P were determ' d bmine y a

cient to
— q res fit for data taken in appli d f' ld uf '

t to quench superconductivity. All theoretical
curves have been scaled so a
a e experimental T 2(H) as discussed in the text. The
experimental values of T 2(H) for H=29
3, and 0kG

c2 or = 29, 22, 15, 8.8
G are, respectively, 3.216, 3.509 3.772

3.980, 4.159 and 4, an .246 K, obtained by an entropy-fit-

=0 d
ting procedure (see Ref. 9 Tabl l f

ata were tak
a e, ootnote c). The II

taken without compensation of Earth s
magnetic field.

r in the magnitudes of 66~~», the experimentally
observed field-induced increase th
wi and the shapes of the curves as the transi-
ion is approached from above T are ' f l
ood a rgoo agreement with the present and previous'

theories. The w'idth of the critical region at H
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= 29 kG may be approximated by' e, =k' '(k F $, )
' '

x (k F&)
' = 0.006, using" k F

= A 'm*v, =1.2 && 10'
cm ', where gyes is the thermal effective mass.
Thus the Lee-Shenoy theory' should be applicable
over a considerable range above T„(H).

The measured width of the zero-field transi-
tion, =0.1 K, is unaccounted for in the present
theory. Although this width is about a factor of
2 less than that observed by others" in similar-
concentration Ti-Mo specimens, it may still be
due to sample inhomogeneity. The measured"
T„versus c (c is the at.%%upconcentration )sug-
gest that the observed width of about 0.1 K might
indicate an alloy concentration spread of at most
3 at. '%%up. The measured's II„versus c ands H„(7')
would then imply a weakly field-dependent in-
homogeneity broadening, increasing to =0.13 K

at 29 kG. Thus an approximate 0.1-K inhomoge-
neity broadening might be subtracted from the
widths of the experimental finite-field curves,
leading to a somewhat better fit with the present
theory. It should be remarked that the magnetic
field inhomogeneity' of at most + 0.1'%%up would ac-
count for a transition broadening of only =0.002
K at 29 kG. The lack of agreement of 4C, , „

(from 5% at 3 kG to 35% at 29 kG) may derive
from the previously mentioned small-Q approxi-
mation, neglect of vortex lattice structure below

H„,and/or our cavalier use of the Hartree ap-
proximation in strong magnetic fields.
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