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fusion coefficient on density, magnetic field,
temperature, and ion mass are consistent with
those of the theoretical diffusion coefficient. The
magnitude of the observed diffusion coefficient

is larger by a factor of 3.5 than the theoretical
value. The results with the toroidal field may

be explained by considering that the perpendic-
ular diffusion damping time is shorter than the
parallel phase mixing time.
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We have proved the strong subadditivity of quantum-mechanical entropy and the Wig-

ner-Yanase-Dyson conjecture.

There are some properties of entropy, such as
concavity and subadditivity, that are known to
hold (in classical and in quantum mechanics) ir-
respective of any assumptions on the detailed dy-
namics of a system. These properties are conse-
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quences of the definition of entropy as

S(p) = = Trplnp (quantum), (12)
S(p)=- fp Inp (classical continuous), (1b)
S(p)=-27p;Inp, (classical discrete), (1¢)
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where Tr means trace, p is a density matrix in
(1a), and p is a distribution function (usually on
R°¥) in (1b). In (1c) the p; are discrete energy
level probabilities.

One such property, strong subadditivity (SSA),
was known to hold for classical systems and was
only conjectured for quantum systems. The ob-
servation that classical entropy has SSA (this, in
fact, is a theorem in information theory) and that
SSA implies strong results about the thermody -
namic limit of entropy per unit volume is due to
Robinson and Ruelle.! Later, Lanford and Robin-
son? conjectured that SSA holds for quantum sys-
tems as well, and Baumann and Jost® * were able
to prove this when p has a special form. Araki
and Lieb® proved a weakened form of SSA, but one
which held for general p and which was sufficient
for many of the purposes to which SSA had been
put in Ref. 1. The physical significance of SSA
is explained below [item (f) of Table I].

Prior to these developments, Wigner and
Yanase® proposed a different definition of entropy
(or negative information) which was generalized
by Dyson.® The conjecture that this generalized
entropy was concave in p was also proved by
Baumann and Jost*” in special cases, but it was
not realized that this concavity problem and the
SSA problem were related; in fact they are equiv-
alent.

Here, we wish to announce that both of these
problems have been solved affirmatively. The
proofs, which are too long for this note, will be
given in two papers.®°

A density matrix is a positive semidefinite
operator with Trp=1. The Wigner-Yanase-Dyson
p-entropy of p with respect to a self-adjoint op-
erator (observable) K is

S,(p, K)=3Tr[p?, K ][p""*, K], (2)
where [A, B]=AB -BA and 0< p <1 is fixed. We

can think of (2) as defined for all p =0 and ask
whether S, (p, K) is concave as a function of p.
The term - 3 TrpKk? is obviously concave since it
is linear, so the problem reduces to that of the
concavity of Trp?Kp' " ?K. This was proved® when
p=1%. We have proved the following:

Theorem: For each fixed K (not necessarily
self-adjoint), Trp?K "p’K is a concave function of
p for p=0 whenever p 20, 20, and p+#»<1.
This theorem is obviously stronger than neces-
sary.

Returning to the conventional entropy (1a), we
suppose that the Hilbert space of the system is a
tensor product of three spaces, H=H' @ H> ® H®.
Thus, the system has three sets of degrees of
freedom; for example, these may be thought of
as the degrees of freedom of a gas in three dis-
joint regions in space (R®). Given a density ma-
trix p'*® on H, we can define a density matrix p'?
on H' @ H® by partial trace, i.e., p'?=Tr,p'?*. In
like manner we can form p*%, p? etc., and for
each of these we have an entropy given by (1a).
Denoting S(p*?%) by S'23, etc., subadditivity states
that

SlZ < Sl + SZ, (3)
while SSA states that
SIZ3+ SZ < SIZ +SZ3. (4)

We first show that S' —S* is convex in p'2.
This implies SSA because, as was pointed out
previously,® in the quantum or classical discrete
case SSA is equivalent to

F=(S"-S+(S* -8 <0, (5)

but as F is convex in p'®, it is less than its max-
imum value on extremal points, which latter are
those p'* that are pure states. For pure states,
F=0.

We also prove some other related theorems,

TABLE I. Fundamental properties of entropy and their truth (T) or
falsity (F) in three kinds of mechanics.

Classical
discrete

Classical

continuous Quantum

(a) S(p) is concave in p

(b) S<s'+ s

(¢) S(p)=0

@ s?=s'

(e) S'2= |st— &2

@ S12% 4 §?< g2+ 528

(g $'%—s! is concave in p'?
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among which is the following:

Theorem: Let K be self-adjoint on a Hilbert
space H and fixed. Then Trlexp(K +Inp)]is a con-
cave function of p for p >0. Closer inspection
shows that this theorem is a generalization of
the Golden-Thompson inequality'®*! to three oper-
ators.

To conclude, in Table I we append a list of the
known fundamental entropy [Eq. (1)]inequalities
and their physical significance. The following
remarks clarify the physical significance of
Table I. The letters (a)—(g) refer to entries in
Table I.

(a) states that if two different ensembles are
united, the entropy of the resulting ensemble is
greater than the average entropy of the compo-
nent ensembles.®

(b) is a statement of subadditivity and is the
basic tool for proving that the entropy per unit
volume has a thermodynamic limit (which may,
however, depend on the particular sequence of
domains).

(¢) expresses a well-known defect of classical
continuous statistical mechanics with respect to
the third law of thermodynamics.

(d) expresses an intuitive defect of quantum and
classical continuous statistical mechanics. An
example occurs when p'? is a pure state, so that
S§2=0. Thus, the entropy of the universe can re-
main zero while the entropy of Earth increases
without limit.

(e) is a consequence of SSA in the alternative
form of inequality (5) (cf. Ref. 5) and is included
as partial conpensation for (d).

(f) is the statement of SSA. As a technical tool
it allows one to prove that the entropy per unit
volume for quantum continuous systems is inde-
pendent of shape, at least for rectangular paral-
lelepipeds of fixed orientation (cf. Ref. 5). If one
is willing to assume that the entropy of every
bounded region is finite [which cannot be proved,
as (d) is false quantum mechanically], then the
limit exists for arbitrary regions in the sense
of Van Hove. However, (f) has a more heuristic
interpretation. Although the connection between
entropy and information is hedged with controver-
sy, we may suppose, along with the Copenhagen
school, that when we measure a system its den-
sity matrix is reduced to that of a pure state and
the entropy is reduced to zero. Thus, entropy

436

measures the information gain in an experiment.
$?% — 82 can be thought of as the information gained
upon measuring a total system (23) when a sub-
system (2) is known. In quantum mechanics it
may be negative because of (d). $'23 - §'2? < §?3

- §* states that this incremental information is
smaller when the initial information [(12) as
against (2)]is larger. This, at least, is the
interpretation given in information theory.

(g) states that the incremental information,
like the entropy itself, increases when two en-
sembles are united.
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