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a trivial matter. X-ray emission measurements
have been made" on related compounds and dif-
ferent Mg-Al alloys, and the emission bands cor-
responding to electron recombination between
valence band and L shells of Mg or Al have not
at all reflected a similar situation. In both cases,
the soft —x-ray spectra of the alloys indicated that
one fraction of the valence band electrons recom-
bined with the Al core and another —with a differ-
ent energy distribution —with the Mg core. This
difference is not due to orbital selection rules
which govern the soft —x-ray emission.

We were able to examine the total valence-band
density of states with Auger electrons. The re-
sults were very similar to those obtained with
x-ray and uv photoemission. Similar electron-
emission measurements for Mg, oe and Mg, Si,
together with the energies of the core levels of
all these materials, will be reported in a future
publication. "

It has been shown that the x-ray and uv photo-
emission and Auger-emission curves are similar
for Mg, Sn, suggesting that each represents rather
well the density of states of the bulk material.

We thank Dr. E. Schonherr for preparing the
Mg, Sn sputtering target and Mr. G. Krutina for

assistance in the measurements.
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We present results of model calculations based on two different approxixnations which
were both intended to be improvements over the coherent potential approximation. We
show that both approximations yield nonphysical solutions; specifically, they predict
average Green's functions which contain singularities on both the upper and lower halves
of the complex energy plane. We conjecture that nonanalytic behavior will occur general-
ly in high-order approximations to the average Green's function.

%e report numerical calculations based on two
very different extensions of the coherent potential
approximation (CPA). One is based on the cor-
rected cumulant scheme of Yonezawa' as devel-
oped by Nickel and Krumhansl'; the other is
based on the cluster approach of Butler and Kohn'
developed to include self -consistency as outlined

by Butler. 4 Our calculations of the average
Green's function for binary alloys are carried
out not only for real energies but for complex en-
ergies as well. It is this extension into the com-
plex energy plane that makes these calculations
unique and shows absolutely unambiguously that
the solutions of the equations for the average
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Green's function within both approximations con-
tain nonanalyticities off the real energy axis.
The nonanalyticities are branch points in both the
upper and lower halves of the complex energy
plane and are clearly nonphysical. We conjecture
that these nonanalyticities are a general feature
of extensions of the CPA. For this reason we
suggest that proposed formal approximations be
treated with caution until their analytic behavior
is understood.

Before we actually describe the numerical cal-
culations we outline what we feel are the most
important points to be learned from this calcula-
tion. Some of these points may appear trivial;
however, we feel that in the past their signifi-
cance has been overlooked.

(1) The exact average Green's function is ana-
lytic in the complex energy plane except for a
cut along the real axis. That is, because every
exact Green's function contributing to the average
has singularities only on the real axis, one can
show that the average and all its derivatives are
necessarily bounded off the real axis. Note, how-
ever that here and below we confine our discus-
sion to the "physical sheet" defined by the bound-
ary condition G(E) -E ', E —~, and the reality
condition G*(E)= G(E*). We say nothing about
singularities which appear in general on other
branches of G(E).

(2) Nonanalyticity (by which we specifically
mean nonanalyticity aff the real energy axis)
makes the approximation unacceptable. Nonana-
lyticity implies such physically nonsensical space
and time behavior of the Green's function as solu-
tions growing in time. Also, local properties
such as the density of states can no longer be
uniquely defined, and furthermore sum rules,
such as expressions for the integrated density of
states, are no longer satisfied.

(3) There is no a priori reason to expect that
an arbitrary approximation to the exact average
Green's function will be analytic. Analyticity ap-
pears very hard to establish generally; we know
of only one approximation scheme for which a
general proof has been found. '

Note that analyticity has never been proved for
the single-site CPA except for certain special
models. On the other hand the CPA has been
used very extensively and no counter example
has ever been found "uggesting that a proof of
analyticity might exist. The work of Tsukada'
and one of us' is particularly relevant here.
These model calculations involve partitioning the

system into "molecular" clusters and performing
a simple CPA calculation with these clusters as
a "single-site" basis. ' Fairly extensive searches
in the pa. rameter space of potential strengths and
concentration have not turned up any nonanalytic-
ities. '

(4) The calculations presented here are ba. sed
on two entirely different formalisms and approxi-
mations. Their only points in common are that
they are both attempts to go beyond the CPA to
take into account the effects of fluctuations and
that they are both self-consistent theories in the
sense that the calculated average Green's func-
tion is used in the defining equation for the self-
energy employed in the calculation. Because of
this we feel that analyticity problems in other
self -consistent high-order approximations will
be the rule rather than the exception. Additional
evidence comes from the numerical work of Ca-
pek' based on yet another approximation scheme.

It is important to realize that the approxima-
tions discussed here do yield analytical results
for certain choices of the alloy parameters and
even when nonanalyticity appears, often very rea-
sonable density-of-states curves can be found.
Thus we feel that published results based on
other approximate formulations must be treated
with caution —one needs to carry out a very ex-
tensive search in parameter space to discover
whether one's approximation has general validity.

Corrected cumulant ca/curvation. — We present
below a calculation for a one-dimensional tight-
binding system for a particular set of model pa-
rameters. Other calculations, both in one and
three dimensions, have been performed; the sin-
gle calculation presented here adequately de-
scribes the nature of the problem.

We consider the model Hamiltonian H=glV, .&g,.

xz,.t+ge,.z,.tz, , where W, , is translationally in-
variant and defines an unperturbed Green's func-
tion

g, , (E) = (2w) ' fan exp(ikR, ,) [E —cos(ka)] '

Randomness is contained in e,. which we take to
be e, =1.75 with probability c=0.25 and e =0
with probability 1 —c=0.75. Note that the band-
splitting parameter 5= (e. , —e )/(half-bandwidth)
equals 1.75; we are in a strong-scattering re-
gime�.

We use the corrected cumulant scheme de-
scribed by Nickel and Krumhansl (NK) and trun-
cate the self-energy at the level of pairs, near-
est and next-nearest neighbor only. That is, we
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take the self-energy to be

Z(k) = Z "&+ 2Z, &'&(I) + 2Z, "~(2)

+ 2Z„"~cos(ka) + 2Z»~'& cos(2ka) .

Our approximate average Green's function is
then given by

(G),„.= (2s) '
fdic exp(i'm, ,)

x [E —cos(ka) —Z(k}] '.

To obtain Z we have to solve Eq. (22) in NK
twice: once to obtain Z»&'~+ Z»"~(1) and Z»~'~ in
terms of (G)» and (G)», and again to obtain Z»~'&

+ Z»~'&(2) and Z»"& in terms of (G)» and (G)„. We
must also solve the CPA(1) equation to obtain
Z»"~ in terms of (G)„. These equations, in addi-
tion to the equations for Z(k} and (G),.~

given
above, then completely define the problem. The
numerical work is completely straightforward.
We require the three matrix elements (G)»,
(G)», and (G)», and these we obtain by iteration
using a Newton-Raphson technique.

The equations are highly nonlinear and yield
many solutions. We determine the correct solu-
tion by sta.rting at a very large value of the ener-
gy where we know the asymptotic values of the
quantities appearing in the equations. We then
follow this unique solution towards the energy re-
gion of interest. The self-energy Z»"~(E) ob-
tained in this calculation is shown in Fig. 1 for a
small region in the complex energy plane. Be-
cause of the existence of branch-point singular-
ities off the real axis one is forced to introduce
branch cuts to define a single-valued function
Z»~'&(E). This is a largely arbitrary procedure;
we have chosen to draw cuts perpendicular to the
real axis. Note that (G(E))» necessarily has the
same analytic structure and thus, for example,
the density of states [Im(G(E))„on the real axis]
will show step discontinuities.

We have already outlined why such behavior in
Z(E) and (G(E)) is unsatisfactory. We now dis-
cuss to what extent it can be considered a gener-
al feature. First, when we truncated the self-en-
ergy at nearest-neighbor pairs only we could not
find any nonanalyticities in this one-dimensional
model but we did find them in a similar strong-
scattering high-concentration regime in a three-
dimensional simple-cubic model. If we extend
the self-energy to include pairs out as far as
eighth-nea, rest neighbor (in one-dimension) the
nonanalyticities remain. Finally, they also oc-
cur if we include nearest- and next-nearest-

IfT) Qg.

1.2- E
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FIG. 1. Contours of equal real and imaginary parts
of the self-energy in the pair approximation of NK. The
solution has been chosen such that (G (E)) ~E ' for
large E.

neighbor pairs and the close-packed triplet con-
figuration in the self-energy. A large range of
concentration and scattering strengths has not
been investigated.

Self consistent -cluster calculation. The calcu--
lation described below was based on the same
model Hamiltonian as the corrected cumulant
calculation described above. Although the nature
and motivation of the approximations are quite
different, similar off-axis singularities are ob-
served for some concentrations and band split-
tings.

The scheme used in that of Ref. 4." The aver-
age density of states per site, Im(G»), is calcu-
lated for a site at the center of a cluster. The
sites within the cluster are treated exactly during
the configurational average while those outside
the cluster are described by an effective Hamil-
tonian, H = Q W, ,a,.~a, + QEa;ta, .

Self-consistency is introduced by choosing & so
that the average density of states per site calcu-
lated for the site at the center of the cluster is
equal to the density of states calculated for the
medium; thus we choose (G„)=G». Here G is
the Green's function calculated with self-energy
E on gEE sites.

Figure 2(a) shows the diagonal element of the
Green's function, Go„calculated for a three-site
cluster with ~, =2 and & =0, both with probabil-
ity 0.5. g is taken to be 0.5 so that the band-
splitting parameter 5 is 2. Note the branch point
occurring for ReE =2.1. Figures 2(b) and 2(c)
compare the true density of states with that ob-
tained from this approximation. The curve in
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2(c) was obtained by drawing the branch cut in Q

parallel to the ImE axis.
We have investigated several values of 5 as

well as several concentrations and cluster sizes.
Off-axis branch points are characteristic of large
5 and high concentration. They exist for five-
site clusters as well as for three sites. In the
work of Ref. 4 branch points exist above the real
energy axis at many of the peaks in the density
of states. Difficulties in following, numerically,
the solution to the self-consistent cluster equa-

FIG. 2. (a) Contours of equal real and imaginary
parts of the Green function Gpp in the self-consistent
cluster approximation. The solution has been chosen
such that GN)=E for large E. (b) Exact density of
states. (c) Density of states from the self-consistent
cluster approximation. The dashed line at ReE = 2.1 in-
dicates where the branch cut has been drawn. The dash-
ed line at ReE —2.3 is due to an uncertainty in the den-
sity of states associated with singularity on the ReE ax-
is. The Green's function is continuous at ReE= 2.3 for
ImE slightly greater than zero.

tion through the peaks were not recognized as
being due to off-axis branch points. The analytic-
ity problems of the self-consistent cluster ap-
proach and possible solutions to these difficulties
will be discussed more fully in a subsequent pub-
lication.

Brouers, Cyrot, and Cyrot-Lackman" have
used the method of Ref. 4 (coupled with a further
approximation which simplifies the numerical
problems in three dimensions) to calculate the
density of states of a model simple-cubic disor-
dered alloy. When we repeated their calculation
for a somewhat higher value of 6 (5=2) than the
one they used we found regions in the complex E
plane in which no solution could be obtained.
This is not simply a numerical problem, but is
related to the branch points which occur in the
one-dimensional calculation. In our opinion the
utility of the self-consistent cluster technique in
three dimensions is still an open question which
we hope to discuss further elsewhere.

Conclusions. —We feel that the results described
above require a complete reappraisal of all meth-
ods based on averaging as used to date to de-
scribe excitations in random systems. In the
hope of stimulating additional research we con-
jecture that self-consistency arbitrarily applied
or equations of motion arbitrarily truncated will
not work because one has not taken into account
properly the interactions between different fluc-
tuating components of the field, e.g., pair and
triplet resonances in the corrected cumulant
scheme, resonances in different spatially local-
ized clusters in the cluster scheme. To be more
specific, we note that the pair approximation of
NK allows pair fluctuations throughout the crys-
tal and also couples them all by introducing self-
energy matrix elements between all possible
pairs. The self-consistent cluster approach of
Butler allows for fluctuations in only one region
of the crystal and not elsewhere by forcing a me-
dium description in terms of a single site-diago-
nal self-energy. Finally„ the CPA of Tsukada
again allows for fluctuations in all regions of the
crystal but it specifically excludes any interac-
tions by never introducing matrix elements of
the self-energy between different "molecules. "
Thus in some sense this "molecular" CPA ap-
pears as the mean; of course, it is not at all ob-
vious that this has anything whatever to do with
the fact that it seems to yield analytical results.

It is a pleasure to thank J. A. Krumhansl for
discussions and suggestions throughout the course
of this work. One of us (W.H.B.) would like to
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In this paper we evaluate the effect of the cubic crystalline field on the magnetic sus-
ceptibility of the Kondo system La:Ce. We show the coexistence of the crystal-field
splitting and the Kondo effect whenever the crystal field does not remove the degeneracy
of the localized states completely. The theoretical curve is in good agreement with the
experimental data for a choice of the Kondo temperature TK

——0.1 K.

Recently there has been considerable work on
low-temperature properties of cubic La:Ce. It
is now well established that the La:Ce system
behaves as a Kondo system. On the other hand,
some uncertainty exists concerning the value of
TK, the Kondo temperature of the system. From
resistivity measurements on La:Ce, Kim and

Maple, ' Gey and Umlauf, ' Sugawara and Eguchi, '
and Wollan and Finnemore' find the Kondo tem-
perature TKto be less than 1 K; similarly, from
nuclear orientation studies Flouquet' finds a
Kondo temperature TK of about 0.1 K, while Edel-
stein and co-workers" from susceptibility mea-
surements estimate TK to be about 20 K.' Edel-
stein' analyzes experimental results using a
phenomenological density of states for La:Ce.
On the other hand, his tentative analysis in terms
of a crystal field only' fails just in the low-tem-
perature region.

Evidence for the coexistence of the crystal-
field splitting and the Kondo effect has been found

by Yoshida and Sugawara'" in single crystals of
Y:Ce. Others, ""taking into account crystal-
field splitting, showed the presence of sidebands
in the resistivity of a Kondo system. A recent

analysis of the crystal-field effect on the resis-
tivity has been made by Cornut and Coqblin, '
using the Schrieffer-Wolff transformation in the
framework of the Anderson model, and by the
present authors" using the s fexchange Ham-il-
tonian. In this paper we calculate the magnetic
susceptibility of the Kondo system La:Ce in the
cubic phase, taking into account both crystal-
field effects and the coupling between the local
spin J and the conduction-electron spin s. The
exchange interaction is conventionally written
as H, f = —I'J.s. Though the s fexchange Ham--
iltonian has not had first-principles justification
except when it can be derived from the Anderson
Hamiltonian, it has been used extensively. Cor-
nut and Coqblin'~ find that applying the Schrieffer-
Wolff transformation to the Anderson model leads
to a Hamiltonian which is different than B,&. We
use H, &

for simplicity since it is still not com-
pletely clear which is the correct Hamiltonian.
The use of this Hamiltonian appears to be well
suited to the La:Ce case."'"

Separate contributions to the magnetic suscep-
tibility from crystal-field and s-d (or s f) inter--
actions were calculated respectively by Murao


