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The Strutinsky method for extracting the shell corrections from ¹lsson single-particle
energies is tested consistently within the constrained Hartree-Fock (CHF) framework.
It is shown that a Nilsson potential, fitted to the CHF single-particle energies at one de-
formation, reproduces the CHF level ordering at other deformation surprisingly well.
The shell corrections obtained from the Nilsson single-particle energies via the Strutin-
sky method are shown, however, to be unreliable by 30/0 on the average.

The Strutinsky-Nilsson' (SN) procedure for ob-
talnlng energy-deformatlon suI'faces foI' nuclei
consists of the following steps: (a) Nature sup-
plies single-particle energies h„at the ground-
state deformation and the total binding energy.
(b) The parameters of the Nilsson potential are
adjusted to optimally reproduce these 8„, and
the potential thus obtained generates single-par-
ticle energies h„(Q) as a function of deformation.
(c) The smoothly varying part of the sum of the
S„(Q) up to the Fermi level, as a function of de-
formation, is extracted using the Strutinsky
averaging procedure, and the remainder is inter-
preted as the shell correction. (d) The smoothly
varying part of the energy is obtained from a

liquid-drop model (LDM) which is fit to the total
binding energies of all nuclei. (e) The energy
deformation surface, obtained by adding the
shell corrections to the LDM energy as a function
of deformation, is compared with the "experi-
mental" energy deformation surface by consider-
ing fission half-lives, etc.

In the work of Bassichis et al. ' it was pointed
out that there are three wave functions or density
1Ylatriees which must be considered in order to
interpret the SN method within the CHF frame-
work. Let p be the CHF density matrix leading to
energy E at some quadrupole moment Q, . Let
p be some smoothly varying (with Q) density
matrix which generates a smoothly varying sin-
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gle-particle potential u to be identified with the
"Nilsson" potential. The Hamiltonian h = t+ u in
turn generates wave functions, a density matrix
p, and eigenvalues S„. Then it can be shown that

&(@=&.S.--'»(p u)+ O((p p)-')+ O((P-P)').

The second term on the right-hand side is a
smoothly varying function of Q, and will be re-
normalized by the Strutinsky method. The other
terms are second order in the differences among
the density matrices. What has been omitted in
other discussions of these second-order correc-
tions is that two of the p's can be quite different.
In making the comparisons, one must choose that
p which yields a quadrupole moment equal to Q„
the CHF quadrupole moment. In general (except
possibly at the extrema), Q(p) W Q(p) = Q(p) = Q, .
Although p -p might well be small, p -p could be
large. A program to investigate the magnitude of
the terms denoted above by O((p —p)') and O((p
—p)') is in progress.

The test described above is not only calcula-
tionally complex, but does not address itself to
the SN procedure as it is practiced. Tests based
on replacing the Nilsson S„by the CHF S„were
shown to be invalid, ' and tests comparing SN cal-
culations (based on "standard" parameters) with
CHF' are inconsistent since both may be wrong.

A simple, consistent, global test, the results
of which are reported here, involves the rep/ace
ment of nature by the CHF results both for the
energy deformation surface and the single-par-
ticle energies to be fit, on the average, by "Nils-
son" S„. Thus the extent to which the CHF re-
sults correspond to experimental data is irrele-
vent, because the entire procedure, steps (a) —(e),
is carried out within the model. This comparison
closely approximates what Strutinshy practition
ers in fact do.

The nucleus chosen for consideration was '"Ru
which contains few enough particles so that CHF
calculations may be carried out in a sufficiently
large space in a reasonable amount of computer
time and yet is heavy enough to exhibit the com-
plexities of the fissionable nuclei of interest.
(The details of these calculations are given in
Ref. 2.) Although it is possible to impose con-
straints on higher-moment operators and thus
obtain multidimensional energy surfaces, only
the quadrupole was constrained. Thus it is as-
sumed that the energy is minimized, at each
quadrupole deformation, with respect to all other
moments, The parameters of a Nilsson potential
were then adjusted so as to fit, on the average,

the CHF S„at zero (quadrupole) deformation.
The potential was then deformed in the usual
manner so as to obtain S„(Q). This Nilsson po-
tential contained the usual two deformation pa-
rameters, e, and e,. As in the calculations of
Krieger and Wong, ' the deformation was proper-
ly calculated from the wave functions rather than
from the potential. For each e, (or quadrupole
moment) the following procedure was used to
determine the appropriate value of e,: There are
two deformation-dependent energy terms in the
LDM, the surface and the Coulomb terms. The
Coulomb parameter was determined from the
CHF rms proton radius and the surface param-
eter was adjusted to fit the CHF total energy, on
the average, as a function of deformation. The
total energy was then calculated by adding to the
LDM energy the shell corrections determined by
the Strutinsky method. The value of c4 was then
chosen, at each quadrupole deformation, so as
to minimize the total energy.

The average fit of single-particle orbitals at
zero (quadrupole) deformation as well as a com-
parison of the orbitals at the CHF ground-state
deformation is given in Fig. 1. In order to elim-
inate size-difference effects the results of the
two calculations were always compared at the
same p, the ratio of the quadrupole moment to
the rms radius. (This is roughly equivalent to
using an effective mass to rescale the nuclear
size. ) It is seen from Fig. I that the Nilsson S's
fit the CHF S's at the ground state about as well
as at zero deformation. Thus the results to fol-
low would be ess.entially unchanged if the Nilsson
parameters were adjusted for an optimal fit at
the ground state. In fact the S(Q) generated fol-
lowed the CHF S's remarkably well over the en-
tire range of deformation considered. At each
CHF local minimum, except for the ones at —2.0
and+2. 5 b, the configuration as given by the Nils-
son calculation was the same as that of CHF. Be-
tween minima the level crossings occurred at
different deformations but in general the two con-
figurations differed by only one orbital.

Summarizing, the smoothly varying part of the
sum of the Nilsson S(Q) is obtained by the Strutin-
sky averaging procedure and the remainder is
identified with the shell correction. This is add-
ed to the energy of the LDM, the parameters of
which are chosen according to the procedure de-
fined above, to yield the total Strutinsky-Nilsson
energy, shown as the middle curve (labeled
EN;& s„) in Fig. 2, as a function of deformation.
(The shape of this function is quite insensitive to
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FlG. 1. Nilsson levels fitted to CHF 8's at zero deformation. The parameters of the Nilsson potential were ad-

justed to give the average fit to the CHF 8's at zero deformation. The fit to the CHF $'s at the CHF ground state
is seen to be of the same caliber. The levels shown are for protons. The neutron fit is similar at both deforma-
tions.

variations in single-particle or LDM parameters. )
The dashed line indicates the LDM energy. It is
not smooth as a function of c„because even
though its value in the two-dimensional E2-E4
space is smooth, the projection of a path in this
space onto the e, axis need not be smooth. The
CHF energy, as a function of deformation, is
shown as the top curve (labeled E„~). According
to the Strutinsky hypothesis all of the fluctuating
part of the energy is contained in the sum of the
Nilsson $(Q). Thus the test of the method con-

sists of examining the difference between the two
total energies. This should, if the hypothesis
were correct, be a smooth curve representing
the difference between the LDM energy and the
smoothly varying part of the CHF energy. This
difference is shown in the lowest curve in Fig. 2.
The deviations from a smooth curve represent
the degree to which the hypothesis is violated.
It should be noted that the fitting procedure for
the LDM will minimize the magnitude of the over-
all deviations. Even with such a bias, however,
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the shell corrections are seen to be unreliable
by -2 MeV, or about 3(Fg; on the average.

Thus the result of this preliminary test indi-
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FIG. 2. Top curve, CHF g(Q). At each deformation
the configuration which leads to the lowest energy is,
of course, retained. The cusps correspond to the inter-
sections of the energies of two configurations and
would be smoothed by the inclusion of pairing. The
scallop on the left end is dotted to indicate that the
most optimal deformation basis has not been used in
this case and the energy may be slightly overestimated
(by less than 0.5 MeV). Middle curve, total Strutinsky-
Nilsson energy. The shell corrections were extracted
from the Nilsson g(Q) and added to a LDM energy
(dashed line). The parameters of the LDM were fitted
to the CHF results. Lowest curve, difference between
the CHF and the Strutinsky-Nilsson energy, apart from
a constant 115S.7 MeV. If the Strutinsky hypothesis
were entirely valid, this difference would be zero (or
a smoothly varying function of deformation if our LDM
parameters are poorly determined). The deviations,
of the order of 30%, indicate the degree to which the
method is unreliable.

cates a strong warning (caveat emptor!) to those
who might take the calculations based on the
Strutinsky-Nilsson procedure on their face value.
We have applied the procedure in a consistent
way to a fairly heavy nucleus, '"Ru. Although
the Nilsson model does rather well in tracking
the single-particle energies as a function of de-
formation, when fitted at one deformation, the
assumption that the sum of these eigenenergies
contains all of the fluctuating part of E(Q) seems
to be unjustified. An uncertainty of at least 30%
would have to be borne in mind in any application
of the procedure. For example, in the prediction
of the fission barrier of a superheavy nucleus
(which is due almost completely to shell effects),
an uncertainty of 2 or 3 MeV out of the predicted
-10 MeV implies an uncertainty of the fission
half-life of a factor 10". One further observa-
tion: The oblate SN minimum is the lowest,
while, in the CHF calculations, it is higher than
the prolate ground state by -3 MeV. If this
should prove to be a general failing, then extra
caution should be reserved to the calculation of
oblate minima by the SN procedure.

Finally it should be noted that pairing effects
have been consistently ignored here. Inclusion
of a pairing force would just smooth out the cusps
in Z(Q) which occur when the configuration chang-
es. These effects will be included in the funda-
mental test of the method, outlined in Ref. 2,
now in progress.
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