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the positions of these levels. In addition to those
reported here, we have performed a variety of
high-field measurements on single crystals of
both light and heavy rare-earth metals, and a
full account of these investigations will appear
in due course.
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Resistive Anomalies at the Critical Point of Isotropic Ferromagnets*

T. G. Richard and D. J. %. Geldart
Department of Physics, Dalhousie University, Ifaiifax, Nova Scotia, Canada

(Received 30 November 1972)

The effect of spin fluctuations on electrical resistivity p(T) is studied in a single-band
model. It is shown that dp(T)ldT varies as the magnetic specific heat for T &T, as well
as T &T and that both short-range and long-range correlations yield dp(T)ldT &0 for
T)T .

The study of the effect of critical spin fluctua-
tions on the electrical resistivity of metallic fer-
romagnets has attracted much attention. Recent
reviews, to which the reader is referred for a
survey of the literature, have been given by Ka-
watra and Budnick' and by Parks. ' Theoretical
discussion of resistive anomalies [i.e., singular-
ities of dp/dT = p'(T) at T,j have been based on
the s d(or s f) exchan-ge model -used by de Gen-
nes and Friedel, ' in which conduction electrons

are coupled by exchange interactions to localized
spins SR located at lattice sites R. Assuming the
electrons to be weakly and quasielastically scat-
tered by long-lived spin fluctuations, the spin
contribution to the total resistivity of an isotropic
system can be written in terms of the high-tem-
perature (spin disorder) limit p, as
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where

I'(R, T) = ((S- S;) —(S ) (S,))/~(~+ 1) (2)

&0 also follows subject to satisfying the "equal
site" sum rule

is the spin correlation function. Its length scale
is $(T) = g,e ', where c = ~T —T, [/T„and standard
notation for critical exponents will be employed. '
The electronic function C(R) is of damped oscil-
latory form. If the damping due to finite elec-
tron mean free path L is neglected, the explicit
form in the case of a free-electron Fermi suf-
face of radius kz is [Eq. (9) of Fisher and I an-
ger']

1 d' cos(2k~R) —1
4k~'A dR'

Using Eq. (3) and an Qrnstein-Zernike type of
approximation for I'(R, T) in Eq. (1), de Gennes
and Friedel' predicted a finite upward-pointed
cusp at T, for p(T). This prediction disagreed
with experimental results for nickel [p'(T) &0
through T I and led Fisher and l,anger' to con-
clude that the finite mean free path l provides a
cutoff on the effectiveness of long-range correla-
tions so that Eq. (3) might more appropriately be
replaced by

I'(R=0, T) =1.

(4) The lattice Fourier transforms of typical
Long-range correlation functions have been
studied for T& T, . Provided the sum rule equa-
tion (6) is satisfied, the resulting

I'(q, T) = 1+ L e ''I'Rl'(R, T)
R~o

(7)

D(vB)
( )

(fl /g)1+ g I

where a is the lattice constant, ~ =1/$, and

D(x) = D, —D,x" ~»'- D,x'~ "+ ~ ~ ~ .
Use of these results and Eq. (4) in Eq. (1) leads
to5

p'(T)/pa= Ae +B+ ~, (10)

has features very similar to those described in
Ref. 5 for the exact correlation function. In par-
ticular, dl'(q, T)/dT&0 for large q.

Consider first the short-range correlations
above T, . For small R/$, write Eq. (2) as"'

4 (R) = Co(R)e (4) A= —D, (v a) ' "' " Q (R/a)~e (R)e ' (11)
R~o

Consequently, the short-range (R «$) correla-
tions dominate resistive anomalies for sufficient-
ly snzaLL T —T,. This conclusion was supported
by an approximate calculation, said to be valid
for sufficiently large k~l and reasonable values
of critical exponents, which yielded p'(T) &0.

In this Letter, we demonstrate the following:
(1) Short-range correlations unambiguously

yield p'(T) & 0, even for relatively short mean
free paths, ' but only if the Fermi surface is con-
tained within the first Brillouin zone.

(2) If the current carriers are consistently
described, e.g. , by a single band with the Fermi
surface contained within the first Brillouin zone,
there exists the sum rule

Q-, C (R) =0.

Use of Eq. (5) leads to the conclusion that p'(T)
varies as that magnetic specific heat beLou as
well as above T, . The e'~ ' term suggested by
Fisher and Langer is absent.

(3) A criterion is given for estimating the tem-
perature range in which short-range correlations
determine p'(T). In the case of nickel, it is es-
timated that e &10 ' is required. At higher tem-
peratures where a Lon g-range correlation func-
tion is more appropriate, it is shown that p'(T)

with cp= —(I+q)+ (1 —~)/v. B is also of the form
of Eq. (11), but with D, -D, and o -0. The sums
in Eq. (11) were evaluated numerically for a fcc
lattice for a wide range of values of the model
parameters (1 & l /a & 10, 0. 5 & 0 ~a & 10, 0.3 &

q&

&0.7) with an accuracy of about 1%. D„D„e,a,
and critical exponents were taken from three-

2.0
I

1.0

O.O

-'l.O-

—2.0-

8.

FIG. 1. The coefficient 4, which determines the sign
of p'(T) in Eq. (10), as a function of &Fa. The corre-
sponding integral approximation, Eq. (12), is given by
the dashed line. The scale of the abscissa is linear in
the variable (kFa) and points where 24F =t" are indi-
cated by arrows.
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dimensional Ising-model calculations. "' From this numerical study, we found p'(T) to be quite in-
sensitive to both cp and f/a. Thus, modest deviations from the scaling form, Eqs. (8) and (9), or er-
rors due to improperly identifying or estimating l/a would not lead to important changes in our results.
Typical results for A are plotted as a function of k Fa in Fig. 1 for y = 0.5 and l/a = 8. To compare with
Ref. 5 we have also plotted the result obtained by replacing the sum in Eq. (11) by an integral. This
approximate procedure yields the explicit form

—1) 81'(V)
{~,i~2 cos[(y —l)9] —,, —

~~~ ., sin(yg),
(P +1

fIee electrons fox 2$p)G, . FQI S1IQpllclty, ne-
glect the mean free path. Then using Eq. (3), the
sum in Eq. (13) is found to be proportional to
QG G8(2kF —G), where tbe sum is over all recip-
rocal-lattice vectors and does not vanish if 2kF
)G, . This unphysical feature of the free-electron
approximation is responsible for the structure in
Flg.

The fact that scattering through reciprocal-
lattice vectors plays an important role strongly
suggests that a consistent treatment of lattice
periodicity would restore p „=O. This is indeed
the case. Recall that current decay or resistiv-
ity is due to the changes in electron velocity
V(k) = VgE(k)/5 as a result of scattering. If we
take account of Bloch electron velocity symmetry,
it is easy to see (particularly in the reduced-
zone scheme) that any electronic transitions
which are induced by a periodic potential and
which are permitted by energy conservation will
always have exactly zero velocity transfer for
arbitrary nondegenerate band structure. Thus,
the sum in Eq. (13) vanishes. This conclusion
also follows even if tbe mean free path (inelastic
scattering) is included provided the dominant cur-
rent carriers are well described by a single band.
Thus, to the level of approximation required in
the present discussion, it follows that a correct
C (R) should satisfy Eq. (5). In simplest physical
terms, Eq. (5) guarantees that imposing an ad-
ditional periodic potential (such as that due to
long-range order) does not lead to an additional
term in the total resistivity, but only to a rood-
ification of cross sections for existing scattering
processes. In practice, simple approximations
to C (R), such as Eq. (4), will violate Eq. (5) to
some degree even though 2k„&G, . Fortunately,
in this case, precise details of C (R) are not
crucial when calculating real resistive process-

11

As an application of Eq. (5), consider the role

p „„Z-,C (R).

Obviously, p „must vanish since a periodic
potential only leads to a new set of stationary
states but not to resistance. However, oversim-
plified approximations may fail to yield zero for
the sum in Eq. (13). A case in point is that of

41'(q +1) .. . Z
„81'(V—1) 81'(y

(P2+ ] )(y+1)~2 ((0 ) l
p

1 1(p-2+ I)

where 0, is the volume per ion, P= (2kFl) ', 9
=tan (2k pl), and I (x) is tbe usual I function.

It is evident from Fig. 1 that p'(T)/p, = Ae ' is
sensitive to the density of current carriers as
specified by k„a. To appreciate why, note that
the point in Fig. 1 at which A first becomes neg-
ative corresponds to 2k~ =2pv3/a= iG, i, the first
nonzero reciprocal-lattice vector. Similarly,
the remaining sharp structure in A corresponds
to 2k~ crossing other reciprocal-lattice vectors.

After some reflection, it is clear that consid-
erable care is needed when specifying a physical-
ly correct set of states to describe the scatter-
ing problem. In the present case of a transition
metal, we shall consider the dominant current
carriers to be described by a (sp-like) disper-
sion law and neglect any contribution to the cur-
rent from d-band conduction or interband effects. "
In this nonfree electron description, 2kF is the
caliper of the s-P electron (or hole) surface.
The density of these current carriers (effective
valence ~1) is then such that this portion of the
Fermi surface is fully contained within the first
Brillouin zone. Within this modified model,
4,(R) can be calculated just as before and Eq. (3)
still applies so Fig. 1 again results. However,
now the only physical range is 2kF (G, . We con-
clude that 8 &0 and so p'(T) &0 for all physical
values of kF and l even though the product k~3

may not be large.
There is also a more fundamental reason for

rej ecting the free -electr on pr edictions for 2k F

& 6,. A direct calculation along the lines of Eq.
(1) of the resistivity in the limiting case of a
weak short-range periodic potential yields
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of the long-range order for T & T, . Equation (1)
can be rewritten in terms of the total spin cor-
relation function as

=5~(S S-) — -- —— — — Q C (R), (14)R . S(S+ I) S(S+1) -,

where a(T) cc e s is the reduced magnetization.
However, the last term in Eq. (14) is zero by Eq.
(5), so

0.8-

0.7-

P() 1 gg S& ()' S(S+I)' (15)

We conclude that p'(T) should vary as the ob-
served magnetic specific heat, i.e., o- e
rather than as &

~ ' as previously proposed. '
This conclusion agrees with experimental data
below T,"and illustrates well the physical mean-
ing of the sum ruIe.

Now consider the relative roles of short-range
versus long-range correlations for T & T, . A

rough upper bound on the E range in which short-
range correlations dominate may be obtained by
noting that the major contributions to sums such
as Eq. (11) come from R &2l. Useful approxima-
tions should maintain I'(H, T) & 0 in this R range
so, from Eqs. (8) and (9), we require at least
D(xoesR"2l)&0 for f esR. If we use available
data for three-dimensional Ising models ' to
estimate coefficients, ~gR —-1.8&&10 '. In the
case of Ni, this corresponds to AT s 1.1'K.
Since the resistive anomaly in Ni is present over
a much wider range of ~T, it is essential to re-
consider the role of long-range correlations. To
do so, we used the generalized Qrnstein- Zernike
(GOZ) approximations of Ferer, Moore, and
Wortis, 8"

I'Goz(R, T) = C(xa) "(a/R)e ', (16)

which is applicable for ~a&0.1, i.e., e&e«-—7.5
&10 ' or 4T «4.7 K in the case of Ni. We have
used Eqs. (4) and (16) in Eq. (1) and evaluated
the sums numerically for a fcc lattice. In Fig. 2,
we have plotted a typical set of results for pooz(T)/
p, as a function of xa. It is seen that p'(T) &0 in
the entire temperature range, wa &0.1, of valid-
ity of GOZ. We have also carried out lattice
sums using the well-known Qrnstein-Zernike
(OZ) approximation [i.e. , tl = 0 in Eq. (16)] for R
&a and the sum rule (6) for R =0. In this approx-
imation, we also found poz (T) &0. This is in
striking contradiction to the common (and incor-
rect) belief that long-range correlations inevit-
ably result in p'(T) & 0.

To appreciate what is involved, consider the

O.gi
0.0 0.'1 Q,2 0.3 OA 0.5 0.5 0.7 0.8

FIG. 2. Normalized resistivity in the GOZ approxi-
mation (see text) as s function of xa for l/a=8. The
upper gower) curve corresponds to an effective carri-
er valence of 1.0 (0.5).

lattice Fourier transform, Eq. (7), in the sim-
ple OZ approximation. To evaluate I'(q, T) for
small q and x, the sum in Eq. (7) is often re
placed by a Fourier integral and the usual
I'oz(q, T) = (4mCa/0, )/(K'+ q') follows. However,
this misrepresents the T dependence of dI'(q, T)/
dT, and a more careful asymptotic expansion is
required. By converting Eq. (7) into a sum over
reciprocal-lattice vectors, the dominant terms
can be isolated and yield
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iM. P. Kawatra and J. I. Budnick, Int. J. Magn. 1, 61

I oz(q, T)=1+Ca, ", +v —5 +(0q', K'), (17)
K +Q'

where b is a lattice-dependent constant. It is
clear from Eq. (17) that for fixed q, I'oz(q, T)
has a maximum as a function of T at T= T,(q)
& T, and that dI'oz(q, T)/dT&&0 for T&&T,(q)." In
fact, I'oz(q, T) qualitatively resembles the exact
correlation function sketched in Fig. 1 of Ref. 5.
Recalling Fisher and Langer's argument that
p'(T) and dl'(q, T)/dT for large q are of the same
sign, it becomes clear why QZ and GQZ long-
range correlation functions and the Fisher-Lang-
er short-range form all lead to p'(T) &0.

In summary, the above conclusions provide a
consistent description of isotropic nickel-like
ferromagnets. Applications to more complex
systems will be described elsewhere.
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The Strutinsky method for extracting the shell corrections from ¹ilsson single-particle
energies is tested consistently within the constrained Hartree-Fock (CHF) framework.
It is shown that a Nilsson potential, fitted to the CHF single-particle energies at one de-
formation, reproduces the CHF level ordering at other deformation surprisingly well.
The shell corrections obtained from the Nilsson single-particle energies via the Strutin-
sky method are shown, however, to be unreliable by 30/0 on the average.

The Strutinsky-Nilsson' (SN) procedure for ob-
talnlng energy-deformatlon suI'faces foI' nuclei
consists of the following steps: (a) Nature sup-
plies single-particle energies h„at the ground-
state deformation and the total binding energy.
(b) The parameters of the Nilsson potential are
adjusted to optimally reproduce these 8„, and
the potential thus obtained generates single-par-
ticle energies h„(Q) as a function of deformation.
(c) The smoothly varying part of the sum of the
S„(Q) up to the Fermi level, as a function of de-
formation, is extracted using the Strutinsky
averaging procedure, and the remainder is inter-
preted as the shell correction. (d) The smoothly
varying part of the energy is obtained from a

liquid-drop model (LDM) which is fit to the total
binding energies of all nuclei. (e) The energy
deformation surface, obtained by adding the
shell corrections to the LDM energy as a function
of deformation, is compared with the "experi-
mental" energy deformation surface by consider-
ing fission half-lives, etc.

In the work of Bassichis et al. ' it was pointed
out that there are three wave functions or density
1Ylatriees which must be considered in order to
interpret the SN method within the CHF frame-
work. Let p be the CHF density matrix leading to
energy E at some quadrupole moment Q, . Let
p be some smoothly varying (with Q) density
matrix which generates a smoothly varying sin-
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