
VOLUME 30, +UMBER 7 PHYSICAL REVIEW LETTERS 12 I'EBRUARY 1973

Rigorous Bounds for Time-Dependent Correlation Functions~

Ole Platzf and Roy G. Gordon
Department of Chemistry, IIa~a~d University, Cambridge, Massachusetts 02438

(Received 8 December 1972)

Rigorous upper and lower bounds are determined for time-dependent correlation func-
tions, of the type used in statistical mechanics and spectroscopy. The input data are the
values of any finite number of initial time derivatives of the correlation function. As an
example, bounds are found for the classical velocity correlation function for a lattice vi-
bration problem. The bounds are found to be much more accurate than the Taylor series
based on the same time derivatives.

Time-dependent correlation functions are of
fundamental importance in nonequilibrium statis-
tical mechanics, transport theory, ' scattering
theory, and spectroscopy. ' Therefore it is im-
portant to have reliable methods to calculate
their time dependence.

The initial time derivatives of a correlation
function can often be calculated quite rigorously,
since they can be expressed as equilibrium av-
erage properties of the system of interest. If a
certain finite number of such initial time deriva-
tives are calculated, we may ask to what extent
this information determines the time dependence
of the correlation function. In this Letter we
give a rigorous and optimal answer to this ques-
tion, for the commonly occurring class of cor-
relation functions which have non-negative Four-
ier transforms. In particular, we prove that
certain upper and lower limits exist, between
which limits the correlation function must lie,
when these initial time derivatives have specified
values. Conversely, any correlation function
whose values pass outside these upper and lower
limits at any time cannot have the specified ini-
tial time derivatives. These upper and lower lim-
its are of course functions of time, which bound
the region allowed for the correlation function by
the known initial time derivatives. We show how
to construct these bounds, and also demonstrate
that they are optimal, in the sense that they are
the tightest bounds possible on the basis of the
known information.

The proof of these results is given in Sect. I.
Methods for the numerical construction of the
bounds are outlined in Sect. II. An example is
given, and these results are shown to be much
more accurate than the Taylor series based on
the same initial time derivatives.

(I) Derivation of the bounds. The definition of
a time autocorrelation function is

C(f) = (q(0) q(f)),

where Q(t) is some dynamical quantity of interest
(e.g. , velocity of a diffusing particle, dipole mo-
ment of a molecule, ete.). The brackets signify
an average over the equilibrium states of the
system at the initial time (zero).

The real part of a correlation function can be
represented as the cosine transform of a spec-
tral density I (((&):

Re(C(t)} = f„cos(~t) f (( ) du). (2)

In many eases this spectral density i(((&) is known
to be a non-negative function,

I((A&) 0 0.

(For example, the correlation function for the
electric moment of a system corresponds to a
spectral density proportional to the absorption
coefficient for electromagnetic radiation. ' This
absorption is non-negative for systems in equi-
librium. ) The following derivation of bounds ap-
plies to correlation functions with non-negative
spectral densities.

For the case of the real part of the correlation
function, the relevant known features are the
even-order initial time derivatives:

(d'"/dt") Re(C(t)} ~,=, = (- I) ' p„,
where the frequency moments p.» are defined by

p,„=f cos(u)t) 1(~)«u. (4)

Typically, a certain set of these frequency mo-
ments can be calculated as equilibrium averages
of the initial time derivatives, say for k =0, 1,
2, ..., n —l. (Any other finite set of even moments
could also be used. ) We wish to determine what
possible values of Re/C(t)} are consistent with
these n constraints. These known values of the
moments in Eq. (4) do eliminate many possible
spectral densities I(e). However, an uncount-
ably infinite class of non-negative functions I(~),
all of which have the n correct moments, ordi-
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narily remain possible for use in computing
Re(C(t)f through Eq. (2). Our task is to find the
range of values of Ref C(t)f corresponding to this
infinite class of allowed I(e) functions.

The theory of Tchebychev systems4 forms the
mathematical foundation for finding the allowed
values of the correlation function. The factors
in the integrands of the frequency moment con-
straints in Eq. (4),

are a special case of a "Tchebychev system of
functions. " Definitions and properties of Tcheby-
chev systems of functions are discussed in detail
by Karlin and Studden. Theorem III.6.4' can be
applied to show that bounds to Re(C(t)} do exist,
given the moment constraints, the non-negative
character of I(~), and the fact that cos~t is a
continuous function of ~.

The distributions I(~) which attain the upper
and lower bounds are characterized by Theorem
IG.6.1, ' as line spectra containing not more than
n frequencies:

(6)

This very simple form of spectrum has non-neg-
ative weights p, at frequencies ~, [6(x) is the
Dirac delta function. ] The corresponding upper
and lower bounds to the correlation function then
have the simple form

Re(C (t)J =Q p; c os ~,t,
i=1

(7)

(8)

which is the cosine transform of the spectrum in
Eq. (6). This representation theorem for the
bounds is really our key result, since now the
maximization (or minimization) of the correlation
function can be carried out in the finite-dimen-
sional space of the 2n values of pi and ~~,, rather
than in the infinite-dimensional space of all non-
negative functions I(u). While this maximization
in the finite space is difficult, it can be carried
out as discussed below, whereas any direct ap-
proach to the original infinite-dimensional prob-
lem is intractable.

(II) Numerical evaluation of the bounds. —The
actual construction of the weights p,. and fre-
quencies e, which optimize the correlation func-
tion must require that the n line spectra of Eq.
(6) have the correct moments, i.e.,

and we also require p;
~ 0. These constraints

still leave n degrees of freedom for the 2n var-
iables, and we must therefore search only an
n-dimensional space to maximize (or minimize)
the correlation function.

We have developed two independent numerical
methods for solving this constrained optimization
problem, a "matrix" method, and a "linear pro-
gramming" method.

The matrix method is based upon representing
the frequencies ~ as eigenvalues of a tridiago-
nal matrix, and the weights p,. as squares of the
first components of the eigenvectors of that ma-
trix. An algorithm has been developed which
gives matrix elements for a matrix of order n/2,
such that the n/2 eigenvalues and weights thus
defined automatically satisfy the constraint equa-
tions (8). Here we note that we can extend this
matrix to order n, by adding n/2 arbitrary diag-
onal elements, and n/2 arbitrary (symmetric)
codiagonal elements. The n eigenvalues and
weights determined from this extended matrix
will still automatically satisfy the constraint
equations (8). The n arbitrary matrix elements
required to extend this matrix are now taken to
define the n-dimensional space in which the max-
imization (or minimization) of the correlation
function can be carried out. Since this n-dimen-
sional optimization problem is now unconstrained,
any convenient numerical optimization method
can be used. In all the cases we have studied so
far, the optima have been found with most of the
variable matrix elements zero. Thus the actual
space to be searched is of very small dimension
(e.g. , 1 to 8).

In the linear programming method, the search
for the p; and ~, values is conveniently divided
into stages. In the first stage, we choose a grid
of possible ~; values with many (e.g. , =10n) fre-
quency points spread across the region of fre-
quencies expected to be important in the spectrum
I(co). The constraints in Eqs. (8) are linear in
the p, values, and we wish to maximize the cor-
relation function, Eq. (7), which is also a linear
function of the non-negative p; values. This is a
standard linear programming problem, which
may be solved by the simplex algorithm. ' Even
though a fine grid of many trial ~,. values is taken
initially, only n of the p,. values turn out to be
nonzero in the solution which maximizes (or min-
imizes) the correlation function, as expected
from the representation theorem. ' The constraint
equations (8) are obeyed exactly by the linear pro-
gramming solutions, but the co; and p,- values are
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not quite optimal. Nevertheless, the linear pro-
gramming values for the bounds are quite accu-
rate, even at this first stage of approximation.

The linear programming bounds may be re-
fined by a second stage of approximation, in
which we add a very finely spaced cluster of u,.
values around each of the n lines which had non-
zero weights in the solution from the first ap-
proximation. The linear programming algorithm
is applied again, to find a new set of n allowed
lines, and the correspondingly refined bounds.
This whole refinement process can be repeated,
until the bounds have converged to their correct
values. In practice, convergence of the bounds
is quite fast, and even the second stage of re-
finement has usually not produced a significant
change in the bounds. Of course, to obtain such
good convergence, some care must be taken that
the initial trial ~; values span the relevant fre-
quency region, and that enough (at least about
10n) initial &u, values are used.

The bounds which have been found for the time-
dependent correlation function are the best that
can be obtained from the known time derivatives.
This optimal character of the bounds is clear
from the method of construction. We have actu-
ally found a non-negative spectrum I(a) which
has the correct known moments. This spectrum
produces, on Fourier transformation, a correla-
tion function equal to, say, the upper bound.
Thus we have a counter example against any oth-
er supposed "upper bound" which is lower than

1.0

the one we obtained. Thus the bounds we obtain
are the tightest possible on the basis of the known
initial derivatives alone.

As an example of these bounds, we have cal-
culated the classical velocity correlation function
for a particle bound by nearest-neighbor harmon-
ic forces in a cubic close-packed lattice. The
first forty even time derivatives have been cal-
culated' for this model. Upper and lower bounds
to the correlation function calculated by the "ma-
trix" and "linear programming" methods agreed,
and are plotted in Fig. 1. The upper and lower
bounds are indistinguishable over most of the
time period plotted, only becoming separated at
long times, when the initial time derivatives are
no longer sufficient to determine the correlation
function.

In order to express the accuracy of the bounds
more clearly, the logarithm of the error (upper
bound minus lower bound) is plotted in Fig. 2,
for various numbers of initial derivatives. It is
seen that the uncertainty grows essentially mon-
otonically with time, for any given number of
known derivatives. To obtain the correlation
function to some specified level of uncertainty,
one sees that the number of derivatives required
grows roughly linearly with the largest time at
which the correlation function is needed.

The traditional use for initial time derivatives
of correlation functions has been to construct a
truncated Taylor series expansion in powers of
the time variable, to approximately represent the
correlation function. However, this truncated
Taylor series lies well outside our bounds, ex-
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FIG. 1. Time-dependent velocity correlation function.
Solid line, upper and lower bounds based on forty ini-
tial derivatives; dashed lines, based on ten initial de-
rivatives; dotted line, truncated Taylor series expan-
sion based on forty derivatives.
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FIG. 2. Logarithm of the differences between the up-
per and lower bounds to the correlation function in Fig.
1, for the cases of ten, twenty, thirty, and forty known
initial derivatives.
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cept at very short times where the bounds and
series are practically indistinguishable.

Since the bounds and the truncated Taylor ser-
ies are based on exactly the same information, it
may appear surprising that they disagree over
most of the time range. The error must lie in
the Taylor series result, since the bounds are
rigorous. In truncating the Taylor series, one
sets the higher (unknown) terms to zero. This
implies that all the higher moments of I(&u) van-
ish, which is clearly inconsistent with I(e) hav-

ing strictly positive lower even moments. This
inconsistency of the truncation procedure results
in the truncated Taylor series values lying out-
side our bounds.

We conclude that our bounding technique for
time correlation functions represents a major
advance, in both accuracy and reliability, over
the Taylor series representation based on the
same initial time derivatives. Since we have al-
so proven that our bounds are the best possible
on the basis of this inforxnation, any further in-
creases in accuracy must make use of some new
information or other constraints on the correla-
tion function.
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New wave-particle processes determining the evolution of large-amplitude, low-fre-
quency ion waves have been observed in numerical and laboratory experiments.

Previous studies of finite-amplitude ion waves
have been concerned with hydrodynamic process-
es, which lead to steepening and soliton forma-
tion, ' or else with wave-particle interactions, '
notably "trapping. " We describe here a new
class of wave-particle processes which occur on
time scales intermediate between those of hydro-
dynamic and "trapping" processes. These pro-
cesses can become dominant, leading to final
states which are turbulent. ' Besides their funda-
mental interest, the processes may have techni-
cal importance in recently proposed schemes4
for wave heating of plasmas.

It is well known' that finite-amplitude, low-
frequency waves will distort and form a soliton
pulse in the breakdown time tb, =1/&u wehere ~
is the angular frequency of the launched wave and
e = 5n/n is the initial ion density perturbation.
Wave-particle interactions, however, become
important as the number of resonant ions increas-
es; these are the ions which satisfy the inequality
lv —cl & (2ey/m;)'", where v is the ion velocity
and y is the wave potential. This number increas-
es with (y)'~', and also as T,/T, -1, since then
the wave pha, se velocity, c =v, „(T,/T, +3)'", a—p-
proaches the ion thermal velocity, (T,/m, )' '=v, b.
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