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New Technique for the Measurement of Magnetic Critical Exponent P»'
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The critical exponent P of Gd is measured directly for the first time by a new technique
of ferromagnetic transmission resonance in zero external field. The technique consists
of measuring the microwave power transmitted through a thin Gd film (47 pm) as a func-
tion of temperature. Analysis of the resulting line shape yields conductivity 0.=0.745
x &0 sec, spin relaxation time 7=7.3 x10 sec, Curie temperature Z'c =2S5'K, and
critical exponent P = 0.31~ 0.05.

In this Letter we describe a measurement of
the critical exponent P for gadolinium defined by
M(T)/M(0) =B(1—T/Tc) s for T —Tc. This mea-
surement is distinguished by being carried out
by means of a new technique, possibly applicable
to other ferromagnets like iron and nickel, and
by the fact that it is the first direct determination
of this exponent for gadolinium. The measure-
ment is less distinguished in accuracy, however,
since as yet it does not approach the 1-5/o ac-
curacy of the nuclear resonance technique in anti-
ferromagnets and Mossbauer-effect measure-
ments in a few substances.

Our new technique involves the observation of
a zero-field resonance in a thin single crystal of
gadolinium by means of the microwave resonance
transmission technique which was developed ear-
lier to study conduction-electron spin resonance
and skin-depth modulation in metals. " Since it
does involve a zero P field, one must sweep
through the resonance by varying the temperature
instead of the field and this determines M(T)
through interpretation of the resulting line shape.
In this Letter we will give an outline of the theo-
retical considerations and the experimental meth-
od for the new technique. A more detailed ac-
count will be published elsewhere. ~

Consider a ferromagnetic single crystal in the
form of a film of thickness I, with its surface
lying in the xz plane, The easy axis of magnetiza-
tion M is taken to be along the z axis, and the
applied microwaves are assumed to be plane
waves normally incident upon the xz plane, the
tangential component of the magnetic vector
being along the x axis. In this work we will be
concerned only with the transmission of electro-
magnetic waves through the sample. The effects

of exchange interaction, anisotropy energy, and
magnetostriction are analyzed elsewheres and
can be shown not to affect the main results of the
present work.

Calculation of the ratio of the transmitted mag-
netic vector to the incident magnetic vector,
h, /h„proceeds in two steps: (i) Calculate the
wave vector k, inside the sample as a function of
frequency e, and (ii) fit boundary conditions to
obtain the desired expression for h, /h, . One
needs only Maxwell's equations and Bloch's phe-
nomenological equation. Eliminating the electric
field from Maxwell's equations, we have

V(V H) —V'H = —(4~~/c2) 8 (H+ 4~M)/at,

sM/et = yM &H —M„,„,„„„/7; (2)

where the displacement cUrrent has been ne-
glected because of the large value of o..

Here y (= 1.72 X 10' Hz/0 for Gd)' is the gyro-
magnetic ratio, c the speed of light, 0 the con-
ductivity, 7. the phenomenological spin relaxa-
tion time (typically 10 "sec), ' and M and H are
the magnetization and magnetic field vectors,
respectively. If we write M =m„i+ w. , j+Mk and
H = h, i+ h, j, where the components m „, vn„h„,
and h, are understood to be small and proportion-
al to epx[ (tk, y —&ut)], a nontrivial solution of
Eqs. (1) and (2) is obtained if

2i 8'
2 b2 (y g)2

where b'= c'/ w2a~, Jt =M(T)/M(0), A. = [1/4pM(0)]
&&1/yT, and 0= &u/4mM(0)y.

One should note that for frequencies much
higher than 4mM(0)y the solution (3) becomes iden-
tical with the usual skin-depth solution h, = (1+t)/
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5; and for slow spin relaxation (X «1), k, goes to
zero as &u approaches 4wM(T)y. A physical pic-
ture of the interactions between the electromag-
nectic field and the spin system is as follows.

If X «1, we see that at ~ =4wM(T)y, R = 0, so
that from Eqs. (1) and (2), k, = —4wm, and k„
= —4am, . In other words, at m =4aM(T)y, b, ,
= 0 and —m h, the energy of the spin system, is
at a maximum. In order to understand the ef-
fect of b„, =0 on the energy transfer, we proceed
to fit the boundary conditions (the pa.rallel com-
ponents of h and e are continuous across the sam-
ple boundary). A simple calculation yields

~h .2' 5 k2

k, c (f -f, )
(4)

where

f, = [I+ i(k, &'&u/2c)]'exp(+ ik, l).

The quantity experimentally observed is tk, /
k, I,"' the magnitude of k,/k, . It should be not-
ed that the expression for Ik,/k, I has a maximum
at &u =4aM(T)y. Near the maximum the electric
and magnetic fields have the following configura-
tions inside the sample if A. = 0: e, = (c/4wo)(2k, „/
I) and h„= 2k„(1-y/I'), where k,„ is the x com-
ponent of the incident magnetic vector, /'= l+ u&5'/

2c, and y is the distance from the incident sur-
face. The energy flow, which is proportional to
e &&h, decreases linearly as a function of distance
inside the sample. The physics is therefore very
clear: Because part of the energy is stored in
the spin system, only that part of the energy con-
tained in the electromagnetic fields mill be dis-
sipated (since energy dissipation is proportional
to E'). This decreased attenuation gives rise to
an enhanced transmission. In this context the
frequency v = 4nM(T)y is physically that frequen-
cy at which the energy of the spin system is max-
lIQuIQ.

The microwave transmission apparatus used in
this work is identical to the one used to observe
conduction electron spin resonance and has al-
ready been discussed in detail elsewhere. "The
apparatus consists of two microwave cavities,
one the exciting cavity and the other the receiving
cavity, with the sample forming the common wall
between them. A superheterodyne receiver is at-
tached to the receiving cavity. The only addition
to the apparatus in the present work is a continu-
ously variable motor-driven 360' phase shifter at
the output of the local oscillator which allows us
to measure the transmitted microwave signal

power rather than the phase-dependent amplitude
conventionally detected. The sample we used was
cut from an extremely pure single-crystal gado-
linium button of size & &&& &+ in. generously pro-
vided to us by Dr. F. H. Spedding. The crystal
was cut into thin slices with a diamond disk saw
and then chemically lapped to foils of thickness
between 25 and 50 pm. The thickness of each
foi1 was established by measuring its surface
area and its weight. The sample was subsequent-
ly mounted on a goniometer and oriented by x-ray
crystallography techniques. The c axis of the
crystal sample was found to be inclined to the
surface at an angle n = 15' with accuracy better
than 1'. The temperature of the sarQple was con-
trolled with a conventional Wheatstone bridge
circuit with a 10-kQ thermistor mounted on the
cavity block as the control element, a 10-AQ He-
lipot as the adjustable resistor set to the corre-
sponding temperature desired, and two 10-kO
precision resistors as reference standards,
When the cavity block temperature is lower than
the desired terQperature, the bridge unbalances
and it turns on a zero-voltage crossing switch
which provides a gate pulse to trigger a Triac.
The gate turns off when the cavity temperature
becames higher than the set temperature. The
Triac feeds about 5 W to the three resistors
mounted on cavity block. We can thus suppress
temperature drifts of the cavity systerQ to less
than 50 mdeg as determined by monitoring an
iron-Constantan thermocouple soldered on the
cavity block. Two more iron-Constantan thermo-
couples measure the temperatures of the exciting
and receiving cavity, respective1y. The tempera-
ture of the sample was taken as the mean of the
two thermocouple readings. We observed that the
exciting cavity is hotter than the receiving cavity
by as much as 1 deg as a result of the disssipa-
tion of 300 mW incident rf power in the exciting
cavity. However, calculation~ shows that the
actual power dissipated at the sample is less than
1 mW, This implies that the temperature gradi-
ent; across the sample is considerably less than
40 mdeg, welt. within our temperature control
error. Therefore, the absolute sample temper-
ature measurements may suffer by an error of
1 deg. However, the relative temperature drifts,
to which the extraction of P is sensitive, were
observed to be no more than 50 mdeg.

We note that in Fig. 1 the data on Ik,/k, I agree
in general shape with those calculated from the
theory. The line shape as a function of tempera-
ture consists of three parts. Above the Curie
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FIG. l. Ih~/h& I plotted as a function of temperature
T. The inset shows (AM(T)y/~l ' ' p1otted as a
function of T. M(T) is obtained from Ih&/6&1 through Eq.
(4). Dashed lines indicate the slopes from which the
credible limits of 8 are obtained.

temperature the transmitted power is a slowly
varying function of temperature. We call this
region I. As temperature is lowered through Tc,
the transmitted power increases within 1 or 2

degrees (region II) to a peak and then slowly de-
creases as the temperature is further reduced
(region III). In order to fit the data, we will pro-
ceed in three steps. The first step is to note that
in Eq. (3) when M =0, k, reduces to (I+ i)/5,
which is the usual skin-depth attenuation. There-
fore, from the data in region I, thickness / = 47
pm, and &v=5. 74&&10" rad/sec, we obtain o
= 0.745& 10" sec ' (corresponding to a value of
resistivity p = 121x 10 ' 0 cm). This value of o

compares satisfactorily with the result of Nigh,
Legvold, and Spedding, in which the resistivity
is 119 &10 ' 0 cm along the caxis. In the second
step, we note that the ratio of transmitted signal
at peak to the signal at region I depends only on
the value of relaxation time ~. From the data we
obtain 7=7,25&&10 "sec. With the above values
of a and ~, each datum point can now be associat-
ed with a unique value of M through Eq. (4). The
values for B and P are then obtained by plotting
lnM versus In(Tc —T) and M"s as a function of T
(see the insert to Fig. 1) for various values of Tc
until the best fit to the data gives straight lines
on both plots. The above fitting procedure yields
M(T)/M(0) = 0.49(1 —T/T c)'s' and Tc= 295'K. The
value P= 0.31 is the mean of the credible limits
indicated by dashed lines in Fig. 2—P = 0.36 and
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FIG. 2. 4aM(T)y/cu plotted as a function of (Tc —T).

The upper figure shows the effect of choosing different
values of I'c. The lower figure shows the best fit to the
data. Dashed lines indicate the credible limits of the
value P. Because of crowding, not all the data points
are displayed in the upper figure.

O. I

P=0.26. The value B =0.49 is the mean of B= 0.52
and B = 0.46 (indicated by dashed lines in the inset
to Fig. 1), where we have used the value of M(0)
= 2010 G.' Plotting the data with different Tc and
p indicates that the above limits are generously
adequate.

When the sample consists of several domains
with the directions of magnetization reversed
from one domain to the next it might be expected
that there is some loss when signals cross the
Bloch walls. This loss can be viewed as a short-
ening of the relaxation time ~, which simply dis-
tributes the loss uniformly across the sample.
Similarly, the tilting of the c axis out of the sam-
ple surface means that the transmission mode,
instead of propagating into the sample at 90' with
respect to the sample surface, now propagates
at 90'-15' (where 15' is the tilting angle) with
respect to the sample surface. The net effect is
a loss of signal strength which can again be des-
cribed by a shortening of 7. We therefore ex-
pect the value 7 = 7.3 x 10 ~' sec to be shorter
than the true value.

We wish to thank Dr. F. H. Spedding for pro-
viding the sample material and Dr. Paul Schmidt
for suggesting the chemical lapping technique.
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Exact Multisoliton Solutions of the Self-Induced Transparency and Sine-Gordon Equations

P. J. Caudrey, J. D. Gibbon, J. C. Eilbeck, and R. K. Bullough
Department of Mathematics, University of Manchester Institute of Science and Technology,

Manchester, M60 2QD, Great Bmtain
(Received 11 December 1972)

We confirm that the previously conjectured p&-soliton solution of the self-induced-
transparency equations is a solution for all~. The solution is transformed to give an
exact solution of the sine-Gordon equation describing multiple collision of & kinks with
different velocities. Simple asymptotic forms of both solutions are given.

In a recent paper, ' an N-soliton solution was
proposed for the self-induced —transparency (SIT)
equations. The SIT equations can be reduced on
resonance and in the sharp line limit to the di-
mensionless form"

E,„+E,=eP, (1a)

P, =EN, (lb)

N, =-EP. (1c)

The notation is that of Ref. 1. The boundary con-
ditions are E(x, t), P(x, t)-0; N(x, t)- —1 (atten-
uator) as x-+~. P'+N', the trace of the atomic
density matrix, is a constant of integration and

equal to unity.
A proof that the solution given in Ref. 1 is ex-

act for all N has now been found; full details will
be published elsewhere, The amplitudes E; of
the N solitons are restricted such that E; c 0,
E; c+E, . A full treatment of the applications of
this solution in nonlinear optics will be published
elsewhere.

The N-soliton solution of the SIT equations has
more general applications since it gives a solu-
tion of the sine-Gordon (SG) equation. The SG
equation can be derived from the SIT equations

Oxx —0~~ = »no (4)

Equation (4) is the sine-Gordon equation which
occurs in many branches of physics. ' ' The SIT
solution transforms into an exact solution of the
SG equation in the transformed x, t coordinates:

8 8
o(x, t) =are cos 1+2,— —, lnf(x, t), (5)

The N&&N matrix M;, has elements

M;, = ' ' [exp(0;)+ (—1)'"exp( —6,)], (7)
(a,a,)'"

where

0,. =2 a; ——t+ a,. +—x +6,. (8)

and the a; and 6; are arbitrary constants.

by the following simple transformation3:

x' = n' '(t —2x), t' =n"'t
F. =8@/st, P = —sine&, N= —cosa.

Dropping the primes, (1) becomes, using (2) and

(8),
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