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position of the shifted luminescence line (30 K,
28 K)s'~ relative to the peak of the free exciton
line. Some of this discrepancy might be attrib-
utable to the width of the exciton line, since it
seems that the low-energy threshold would be
more appropriate than the peak. A value of 4
(17 K) similar to ours was obtained by Pokrov-
skii' from studies of luminescence intensity with
power and temperature under steady-state condi-
tions. Theoretical estimates' "give 20 and 29K.
Since the discrepancies we are discussing repre-
sent only 20% of the correlation energy, the theo-
retical numbers cannot be relied upon to such ac-
cul acy

In conclusion, observations of the thresholds
and decay patterns provide us with information
about the energy parameters of the system and
insight into the interaction between the droplets
and the exciton gas. The good fit obtained to the
unusual decay curves confirms the validity of the
droplet model.

%e thank W. F. Brinkman and E. 0. Kane for
useful discussions and F. C. Unterwald for tech-
nical help in the experiments.
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This paper introduces two integrals which simplify calculation of the dynamic proper-
ties of magnetic domains. These integrals, over quadratic functions of the spatial de-
rivatives of the magnetization, yield forces acting on a domain which correspond to the
gyroscopic and dissipative terms in the Gilbert equation. The force integral corre-
sponging to the gyroscopic term is found to be even less sensitive to the details of the
spin distribution than the dissipative drag integral. Hard magnetic bubble domains are
considered as an illustrative example.

Recent papers have described the static spin
configuration and anomalous dynamic properties
of hard magnetic bubbles. ' ' This paper presents
several relations, derived from the Gilbert equa-
tion, which greatly facilitate the calculation of
some of the dynamic properties of these and
other magnetic domains. The relations are ap-
plied to the hard-bubble problem as an example.
Cartesian tensor notation is used, with repeated
indices being assumed summed and with the total-
ly antisymmetric unit tensor being denoted by
e,,„. Field position is denoted by x,. and domain
position is denoted by X, The magnetization is
specified either by its three components M, , or

by the saturation magnetization M, and the polar
angles 6 and y. [The z axis (index=3) corre-
sponds to 6 = 0; the x axis (index = 1) corresponds
to {l= w/2, cp=0, the coordinate system being
right handed. ]

The Gilbert equation, written in tensor notation
and arranged in the form which reads, 'The time
rate of change of angular momentum minus the
torque due to linear dissipative effects minus the
torque due to reversible effects is equal to zero, "
1S

dM; n d~*
lyl dt lyly, '" ~ dt

(la,}
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M, dM,./dt=o,

M,. eM,./ex, =O,

(2a)

(2b)

(2c)

Consider now the equivalent field equation,

H. '= H. + H.'+ H. + H."=0t t i

where Hi, H,.', and H,. are the mutually or-
thogonal vectors [as a consequence of (2a)j

II '=—PMt t

where the effective field due to reversible effects
is

(lb)

p denoting the energy density and 5 denoting
functional variation. Multiplication of (1a) by M,.
and contracting on i yields the well-known con-
clusion that the Gilbert equation describes only
systems in which IM,. I is conserved. Additional-
ly, only materials in which M, is spatially con-
stant will be considered here, so that

ing force density f"'" is (since p~'"= -El,"'".M,.)
r ex H r ex

i j (7a)

eM, /ex. , = (eH, " '"/ex, )M, .

[Equation (7a} is equivalent to (7b) by integration
by parts, the bounding surface being located
either outside the magnetic material or so that
JI/J&H&"" has the same value on opposing sur-
faces. j Since the external term is clearly a
force density and since it is one term of a zero
sum, the other terms may be also identified as
force densities.

For steady motion with velocity v&,

(7b)

M,. = M,.(x,. -&,.),
X,=g g,

dM, /dt = —v,. e.M,./ex,

(8a)

(8b)

(8c)

By using (Sc}, (4), and (8c), the gyroscopic force
density may be written as

A =&~~v~

the antisymmetric gyroeoupling tensor g „being
defined by

(magnetization equivalent field),

—1 dMq
H,. —=

I

Ie;~„M,
s

(gyroscopic equivalent field),

dM;
m, lyI dt

(dissipative equivalent field).

(Sb)

(Sc)

(Sd)

BMm BMn
ij ~ 2Iy I

&mn k gx ()x
8

s

f, =e,,,gsv.
the gyrocoupling vector g,, being defined by

(9b)

(9c}

Multiplication of (S) by —e,,„M„summing on i,
and renaming indices reproduces (1). Thus,
when ~M, ~ is constrained to M„(1) and (S) are
equivalent.

It will now be shown that the products (for
a=m, g, n}

aM aMij le~
2M ly I

m~ Bx. 8&s
(9d)

and where 0 „~"~=e, ,„e „ is a generalized Kro-
necker symbol. By using (Sd), (4), and (8c), the
drag force density is

f a HaeM/ (4) A =derv~ (1Oa)

are force densities. Note first that as a conse-
quence of (2}, f,. =0 even if P go, so that a = m
may be ignored. Since H,.'= 0 at all points, then

the dissipation dyadic d, being defined by

d, , = (- o/M, I y l)(eM„/ex, .}eM,/ex, . (10b}

t pt

Dividing the reversible term inte internal and ex-
ternal terms yields

H r g r ill+ H r cx
t t i

where H,.""is the applied field. The correspond-

Finally, the reversible force is, from (1b) and
(4},

f,"= (ep~ /eM, .) eM, /.ex, .

Expressing the M,. in terms of M, and the polar
angles 0, y and using vector notation converts

231



VOLUME 30, NUMBER 6 PHYSICAL REVIEW LETTERS 5 FEBRUARY 1/73

(9)-(11)into

t~=gxv,

g= -(M, /Iy I) sin6(V6) x(vy},

f =d'v

(12a)

(12b)

(13a)

d= -(nM, /iyi)

x [(V6)(V6)+ sin'6(vcp)(vy}], (13b)

t "= (hp~/66)V6+(6p~/6p)vy. (14)

Note that g,.' is an invariant local measure of the
extent to which the magnetic distribution depends
on two spatial coordinates. The corresponding
measure of the dependence of the magnetic dis-
tribution on three coordinates 9(M„M„M,)/
8(x„x„x,) =0, since M,. BM,./Bx, . =0.

The total domain reversible force and the total
gyroscopic force integrals will now be carried
out in general for steady-state motion. Since the
spin configuration propagates in steady state by
assumption, it is physically clear that only ex-
ternally applied fields contribute to the reversi-
ble energy force. In order to consider this for-
mally, it is convenient to divide the reversible
force density into two terms,

7in+ 7 ex (15)

The internal force-density term f" '" contains all
forces due to anisotropy energy, exchange ener-
gy, internal demagnetizing fields, magnetostrie-
tion, etc. The external force density f" '" con-
tains the force due to the externally applied field.

By using (14), the total internal reversible
force is

in inF"'"= ' (V6)+ a (Vq) dV.
$6I (16a)

Since only variations corresponding to displace-
ments are of interest, the 56I and 5y at different
field points are constrained to correspond to dis-
placements so that

F"'"=—f„(6p '"/6x)dv (16b)

The variation and integration are then interchanged
with the result

written as

F~=Gxv, (18a)

6=—kg dV, (18b)

where G is the total gyrocoupling vector. From
here on attention will be restricted to G, , the ex-
pressions for G„and Q, being entirely similar.
Since the z component of (12b) may be written in
terms of the Zacobian B(cos6, y)/8(x, y) as

g, =(M, /ly l)8(cos6, y)/a(x, y),

the z component of the total gyration is

(19)

M, 8coso, y

=(M, /lyl) f, a cos6aydz,

(20a)

(20b)

C, = (4aM, /I y l)hn. (21)

The steady-state motion of magnetic bubble do-
mains is thus governed by the equation

and the transformation from (x, y) to (cos6, q&) is
one-to-one so long as neither g, nor g, ' is zero.
In magnetic materials in which the exchange in-
teraction is sufficiently strong, the exchange in-
teraction prevents g, ' = 0. The surfaces (of
whatever dimensionality), g, =0, form the bound-
aries of the regions over which the integration
(20) is valid. In (20), acos6 and ~y are thus the
changes in cos 0 and y from one g, = 0 boundary
to the next.

In the ease of a eylindrieal domain in a plate of
thickness h. oriented with the plate normal along
the z axis, the domain wall separates a g, =0 line
at or near the center of the domain from the g,
= 0 cylinder of infinite radius centered on the do-
main. In this case Dcos6=2 and ~y=2pn, where
n is the integral number of times p rotates about
the z axis when the domain perimeter is traversed
once in the direction of increasing y. Although 0
and y may be functions of z, n must not be a
function of z if the spin distribution is not to con-
tain singularities. The total gyrocoupling vector
of a cylindrical domain in an infinite plate of
thickness 5 is thus

F"'"=-6E /6X=0 (16c)
F"'"+(4aM, /lyl)hni, xv+v f~d dV=O, (22)

since the total energy E;„ is invariant by assump-
tion.

From (12) the total gyroscopic force is

F'= f~gxv dV. (17)

Since v is constant over the volume, (17) may be

where F'"'" is the force due to the externally ap-
plied field. The integral of the dissipation dyadic
is only weakly dependent on velocity at low veloc-
ity so that it may be estimated from the static
spin distribution. It is well known that in any
comparison with experiment the dissipative term
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must be modified by adding coercivity and/or
making e depend on velocity. This tends to re-
duce the importance of any errors which arise in
the estimation of the dissipation integrals since
the coercivity term will appear in the same vec-
tor component in (22) as does the dissipation
term.

As an example of the estimation of the dissipa-
tion dyadic, consider a cylindrical domain in
which the Bloch lines are sufficiently dense so
as to be in contact. It can be shown' that in a
material whose energy density is

ps=& [(p6)'+ sin'8(Vy)']

+ A' sin'6+ 2g34 sin'y sin'6

there exists a planar wall solution to the corre-
sponding Euler equations to first order in the
parameter q '=2', '/E„of the form cos6
= tanh [(mx/l„) y(y) j, where cp(y) is in general an
elliptic function with period s. When the Bloch
lines are in contact, the solution approaches y
=+2wy/s and l '=K„/m 'A+(s/2) '. The dissi-
pation integral is evaluated for a section of this
planar wall and then this result is applied to the
cylindrical domain case neglecting curvature ef-
fects and assuming uniformly spaced Bloch line
pairs, s = nd/n. Substituting this result in (22)
and assuming a uniform applied field gradient
V'H, , the velocity drive is

1 2N

where A=2nd 'A' 'E„' '. When the Bloch line
density becomes so large that A &1, then the fac-

tor in (24) involving X rapidly approaches unity.
Resolving (24) into components results in

~
VII. ~=

~
8nv/d'y~(1+ o.')'",

)=tan '(1/n), (25b)
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where r„ is the angle between the velocity and the
driving gradient. Slonczewski has obtained simi-
lar expressions following a less-general approach
while results identical to (25) have been obtained
in a more specific calculation. '

Note in closing that, although the emphasis of
this Letter is on the total domain forces, the
force density expressions are useful in them-
selves as an aid in determing the internal struc-
ture of a moving domain. Even when the motion
is not strictly steady state (such as motion driven
by a thickness gradient), the instantaneous dissi-
pation and gyroscopic forces may be used as
first approximations.
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