VoLuME 30, NUMBER 6

PHYSICAL REVIEW LETTERS

5 FEBRUARY 1973

Skeleton Graph Expansion for Critical Exponents*

Toshihiko Tsunetof and Elihu Abrahams
Physics Department, Rutgevs, The State University, New Brunswick, New Jevsey 08903
(Received 26 October 1972)

Critical exponents are calculated using conventional many-body perturbation theory by
means of a self-consistent skeleton graph expansion in 4 — € deminsions, where € is
small. The self-consistency is expressed through Ward identities. The results, the
same as those of Wilson, are obtained without recourse to renormalization group argu-

ments.

The behavior in the critical region has been
discussed recently by Wilson' using a Feynman
graph technique which exploits an € expansion
about four dimensions to give systematic correc-
tions to mean field theory. His method requires
the correct choice of coupling constant #y(¢) in
each dimensionality d (=4 - €) to match the criti-
cal behavior. The existence of a unique u,(¢) is
deduced from a renormalization group argument.

It is of interest that the same results for criti-
cal exponents in powers of € may be obtained by
a self-consistent skeleton graph expansion which
used renormalized propagators and interaction
vertices throughout, does not involve u«,(¢), and
requires no appeal to a renormalization group
discussion. We give the procedure in this Letter.

Self-consistency is expressed through a set of
Ward identities which are evaluated as power
series in €. For simplicity we consider only a
complex field, e.g., helium. We adopt the Ham-
iltonian of Ref. 1:

H/RT= [l 900+ 930 |2+ Uyl () [1],

where y(x) is the complex order parameter and

a large momentum cutoff will be used. The rest
of the notation is the same as in Ref. 1. The
Feynman rules for statistical averages have been
discussed by others'~® and correspond to taking
all Matsubara frequencies as zero in the usual
technique.*

The essential point of our method is that the
renormalized four-point interaction vertex I' is
of order €. Therefore, the order in € of a skele-
ton graph is determined by the number of vertic-
es and a systematic € expansion is possible.

This fact also enables us to analyze the momen-
tum dependence of T', as discussed below.

To find the critical exponents v and  we con-
sider the renormalized propagator (order param-
eter correlation function) g(%; ) and four-point
vertex T'(q,, q,, 45 ¥). Here # is the inverse sus-
ceptibility which vanishes at the transition point

as' (r, —7,,) 7 and the ¢; are the total momenta in
the three independent® pair channels of T (cf.
Fig. 1). Thus, g(0;7)=1/r, g(k; 0)=%""2 defines
n, and T'(0, 0, 0;7)=u,, the renormalized cou-
pling constant." We shall make a parquet graph
analysis®® of T'. The relevant Bethe-Salpeter
equations are depicted in Fig. 1 where the ir-
reducible kernel I; is the set of all graphs of T
which cannot be cut in channel 7,° whereas the
parts T'; can be so cut. The totally irreducible
part of T" consists of the bare interaction «, plus
skeleton graphs R which have at least four ver-
tices and therefore will be at least O(e?). We
limit ourselves to O(e?) in y so that we need T to
O(€®) and we may neglect the nonparquet graphs.
Thus, I, is given by®

U+ 2, T jo

i=1

The parquet graphs have been evaluated with
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FIG. 1. Decomposition of four-point vertex I'into its
reducible parts.
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logarithmic accuracy® for d=4 by Larkin and
Khmel’nitskii.? Their calculation can be repeat-
ed for d=4 - € and it gives directly the first term
of the € expansion for I'(g;; 7). To go further, we
need to analyze the momentum dependence of T.

For example, we shall need I'(q, 0, — q; 7) (Fig. 2).

This is given by a set of parquet graphs which
differs from that for « by having, in its internal
structure, certain pairs of propagators having
total momentum ¢ instead of 0. We denote such
a pair by G(q) [G(q)=[d’pg(p+q)g(p)--+]. I we
write G(q) = G(q) - G(0) + G(0) = A(g) + G(0) for
every such pair and expand, we get a sum of
terms as follows. First, all terms with G(0)’s
give just u,. Next, all terms with just one A(q)
(inserted in all possible ways but only once) and
all the rest G(0) give a contribution u zA(q)u,
which is O(e®). This is shown in Fig. 2 where
the wavy line denotes A(g). The next terms have
two A(q)’s inserted in all possible ways. This
gives u A(q)ugA(q)uy,, which is O(e®), etc. Since
we shall need the momentum dependence only to
O(€?), we may write

0
T(q,0,-q) - T (o) = = +
- “
FIG. 2. Skeleton graphs for the momentum depen-
dence of I'(g,0,-q; 7).

T(q,0, = q;7) =ug - 5uA(q) =uy — 3ug? [dplg(p+ q)g(p) - ()], (1)

where the factor  arises because there are two
independent channels (i=1, 3) in which the pairs
G(q) occur.® In channel 2, such pairs only oc-
cur in the cross bubble of the full T in the Bethe-
Salpeter equation and give a contribution of O(e®)
which we neglect (cf. Fig. 2).

In the calculation of critical exponents, we
shall need the form of #4(») and the momentum
dependence of T' for »=0. These may be found
from an examination of the skeleton graph struc-
ture. One sees that the basic building block of
skeleton graphs is [d% T"g? which must be con-
stant in the two limits »=0 or momentum =0,

A solution of the coupled skeleton graph equa-
tions involving T" and g is obtained when g(&; »)
has the homogeneity form » " (£*~"/r), where 7
is to be determined. Then ucc# € 27/277 and
T'(g; 0)c g€ 2", In particular, the the lowest-
order momentum dependence of I';(g; 0) is on
only the total momentum g¢; in the sth channel and
occurs in O(e®). Thus, T';~ A(e)g; 2" for »=0

N
7

and small ¢;. To O(e?), then,

T'=Ae+Be*+ 34€%1In(q,9,4,) (2)
and the coefficients A and B may be determined
by methods described below.

Next we show how to find u, to O(e®). In order
to express u in terms of skeleton graphs, i.e.,
full T’s at all vertices, we calculate the deriva-
tive

3
ug'= ZJ‘IBI‘,-(O; ¥)/o7,

which, since ug~er € 27/2°1 we shall need to
O(€®). For oT';/o7, we differentiate in various
parts of Fig. 3: First, in all possible g°(k) be-
tween I;’s; this gives a full ' on each side of
8g%/o7 and so is O(e?) at least. Second, in the
left-hand-most I;; this gives 81;/57 connected to
a full T by g°(k). An equal contribution comes
from the right-hand-most ;. If we differentiate
in an internal I;, we shall have a full T on each
side of 8I;/87, a contribution at least of O(e?)

4+ - -

FIG. 3. Ladder graphs in the Bethe-Salpeter equation for I;.
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which we drop. Thus we find, for example,
8T,(0;7) /67 =~ [dRT(0, k)T (k, 0)ag*(k)/ov 2 [d°R T (0, k)g?(k)a L,(k, 0) /37 (3)

We have already treated the momentum dependence of T to O(€?) in Eq. (1). This is sufficient to give
the first integral of Eq. (3) to O(¢%). In the second integral, we have 81,/6v =8(I',+T,)/67. In these
derivatives it is sufficient to keep only the term corresponding to the first integral of Eq. (3) and to
replace all T’s by u;’s. We find, using Eq. (1),

0T ,(0; 7) /67 = —u” [d'k 8 g (k) /o7 + 3u,’ [ [d’p d'k[g(p + k)g(p) - 8°(p)]0g° (k) /o7
+3ug’ [ [a'p d’rg(k) ol g(p + k)g(p)) /o7
The result is the same for 8T',/87, while for aT",/97 the coefficients of the three terms are -3, 2,
and 2.° Summing the three channels, we find
Ug' /= (€=2n/2=n)r ' = =Bupl’/2+4u (2] — (I?)'], (4)
where

1= [g(R)d%, J= [[d'kd’pg(R)e*(p)g(p+F).

At this point, we can extract the leading term in u, by keeping only the linear terms in € on each
side of Eq. (4). In the integral I we may replace g by its zeroth-order value g "' = +%? and take d =4.
We find €/2r = 5u,/327% so that u, = (167%/5)e + - - -. The next term may also be found from Eq. (4) but
it is unnecessary for our purpose.

In order to evaluate y we use 7 o (v, —7,,)? and obtain » from the set of self-energy () graphs for
zero momentum. Since »=7,-2(0; ), the derivative ar/aafo may be constructed graphically by differ-
entiating in turn each internal propagator in each graph of =.” In this way, one gets the Ward identity
for the zero-momentum vertex A(0, 0; ») as depicted in Fig. 4:

A, 0;7)=87/87,=1 - [1,(0, k)g*(R) Ak, O; 7) d’k. ,
Now, 8A/87 contains full T”g only and is constructed in the same manner as aT',/87. The result is
(the momentum dependence of A enters only in higher order)

N/AN=(1 =1/t = —u '+ Ju |27 = (12)']. (5)
We combine Egs. (4) and (5) and find

[2€ =551 =50 = (1 =y D7 = Fug?[20" - (1%)'].

To solve for y to O(e®) we need only the first-order u, already found and the integrals I,J which may
be evaluated in zeroth order. Since 7 is O(€?), we have

2

y=1+3 €+250€ —37- (6)

We now show how to obtainn to O(e®). In this case, we look at the behavior of propagators with » =0
and % finite but small. Then g*=%£%"", We consider the Ward identity

V.87 (B)= (2 =n)kk " =KL (k) = - [dp I,(k, p)g*(PBL (). (7)
We express the right-hand side in terms of skeleton graphs by constructing the derivative
8 (kL) _ aL,(k, p)

S = (2= =7 = = fatp SR g2 p)p L ().
The derivative 81,/6k =0 (T, + T',)/5% is found by differentiating in turn each internal propagator in I,

k

FIG, 4. Bethe-Salpeter equation for the zero-momen- + 1"
tum vertex A, 2
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which contains 2. To O(e?) only those appearing
in the intermediate pairs of total momentum 2
contribute. The sum of such contributions gives
a full T on each side of the derivative of the prop-
agators. The result is

ar,/8,= - A?8[ [d*qg(q+k)g(p+q)]/ok,
oT,/ok=-3A%8[ [d'qg(q+k)g(p - q)]/ok,

where A is the value of I'(» =0) to O(¢€) and is
thus independent of momentum [cf. Eq. (2)]. The
value A =167%/5 may be found by just these same
techniques. However, it is the same as u, to
O(e€) since the lowest (logarithmic) approxima-
tion for the parquet graphs gives the same re-
sult for =0, k+0 as for k=0, v#0.> Combining
these results and taking another % derivative to
isolate the most singular term, we find

d*(kL -A’L (4m)*
ep) 2 AL e @)

where, from Eq. (7), L,=2 is the zeroth-order
value of L. In summary then, from Egs. (6) and
(8) we have, as in Ref. 1,

y=1lt+getge’, n=ge.

It is not difficult to carry out the evaluation of
1 to O(e®). The calculation requires the evalua-
tion of the second-order coefficients in Eq. (2)
by means of an € expansion of 8T';/8¢; using the
methods already discussed.

All of the foregoing development can be done
for the general case of a field with n real com-
ponents, although some care must be taken in the
construction of a Ward-like identity to replace

Eq. (7). The results are again the same as those
of Wilson."

The calculation of correlation functions may be
done using our methods. We can, for example,
find the specific heat exponent « to O(e®) by cal-
culating 92S/97%, where S=[d’kg*(k; v)A(k; ) is
the “density-density” correlation function for ¢
=0. The dependence of S on 7 gives « since S
(v, =7, "%.% Derivatives are taken as before
in the singular intermediate pair states and the
momentum dependence of the »# 0 density vertex
A(R; 7) is treated in the same way as in the dis-
cussion leading to Eq. (1). Our results agree
with those obtained with Wilson’s method by Ma.®

We are extending these perturbation-theoretic
methods to include the nonequilibrium case in
order to discuss dynamical critical effects.
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We treat the vacancy as a bubble of one atomic volume. We use empirical values of the
surface tension measured for the metallic liquid phase to estimate the free energy of for-
mation of this bubble. A small additive correction is made to account for covalent bonding
in the semiconducting phase. The model is reasonable for cases where the Wigner-Seitz
atomic radius is large compared with the dielectric screening length. Good agreement
with experiment is found for available data for Si, Ge, and Sn.

The electronic structure and energy of forma-
tion AF, of vacancies in crystals have been dis-
cussed theoretically using a variety of wave-
mechanical methods. Pseudopotential calcula-
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tions have been reported for alkali'*? and noble®
metals, Al,* Si,*® and Ge.® Molecular-orbital
calculations have been made for diamond,” Si,?
and Ge.® In general this work has shown that for



