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From Fig. 2(a) it is seen, for example, that
for Eo =13 the magnetization saturates in a field
range which agrees quite well with the measure-
ments. The calculations are not very sensitive
to the value of /„ for l, =10 and Lp 20 one still
obtains magnetization curves saturating in the
desired field range. Qf course, the magnitude
of the magnetic moment varies strongly with l, .
Lacking an exact knowledge of the number of
spherical particles present in the samples, it is
not possible to make a decision on the most real-
istic value of E„avalue which should be regard-
ed as an average over all possible allowed orbit-
al quantum numbers for particles of different
size as present in the experiment.

The increase in the saturation magnetization
as the temperature is lowered can be explained
in two ways. It is possible that by the extrapola-
tion procedure of Fig. 1(a) the almost linear but
not yet saturated high field pa, rt of M(II) also has
been subtracted; on the other hand, it cannot be
excluded that the eigenvibrations of the particles
which destroy the spherical symmetry are frozen
out, causing pure states with higher l values to
be occupied.

It seems that orbital paramagnetism could play
an important role in our experiments. It is con-
ceivable that Kubo's arguments remain valid if
the specimens do not fulfil the conditions for or-
bital paramagnetism, as in the case of Taupin's
experiments' whexe thin lithium platelets were

investigated.
%e are grateful to Dr. A. P. van Gelder for

many interesting discussions.
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It is observed that for a normal threshold Iq I =q„2+q~~+q~ =0, for a triangular anoma-
lous threshold q'& =q„+q =0, and for a box anomalous threshold g„=o, when scattering
is taking place in the xz plane, with incident (or outgoing) particles moving along the z
axis ~

In attempting to derive dispersion relations for
form factors" and scattering amplitudes' from
perturbation theory, people have discovered the
presence of anomalous thresholds in the physical
sheet when the participating particles satisfy
certain mass relations. It has been pointed out
earlier' that all relevant intermediate particles
must be put on the mass shell in order to pro-
duce these singularities; energy and momentum

can still be conserved at each vertex, but with
real energy and complex Inomentum.

Subsequently, Landau' proposed a method of
locating the singularities of any given perturba-
tive diagram. A Landau singularity is permitted
if, in a reduced diagram, all intermediate par-
ticles are real (i.e. , q, '+m, . =0), and Qa,.q, =0
within a loop. The singularity will be present in
the physical sheet if n, =0 for all i; otherwise it
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lies on an unphysical one. The triangle and box
diagrams are special cases of the Landau equa-
tions.

Cutkosky' moved one step further in providing
a rule to evaluate the discontinuity across the
cut associated with a given Landau singularity.
The prescription is to replace each propagator
(q, '+m, .' —ie) ' in a reduced diagram by 2mi

x6~(q, '+m, '), ' which fulfills one of the Landau
conditions one started with. On the other hand,
the result is completely independent of the n;,
lucky in that it may be independent of the per-
turbation theory, while unlucky because it also
yields no information about the Riemann-sheet
structure of the amplitude for this singularity.

At the same time Mandelstam~ attacked the
problem with an analytic continuation of certain
external masses in the ordinary unitarity equa-
tion. In practical cases, ' Mandelstam's method
reproduces what is contained in the Landau-
Cutkosky theory, plus allowing a determination
of the phase which is ambiguous in Cutkosky's

formula. What is surprising is, of course, that
the two approaches should yield the same result.

That the anomalous thresholds emerge from
an unphysical sheet into the physical one when
the external mass increases from a tightly
bound state to a loosely bound one (e.g. , D, Z,
etc. ), has called for a dynaxnical interpretation'
of these singularities. There are also attempts"
to promote the anomalous thresholds to near or
even into the physical region to see the physical
observable effects they may have.

In this note we report an observation made on
the kinematical aspects of triangular and box
anomalous thresholds. We base the discussion
on Cutkosky's discontinuity formula, since it is
the imaginary part of an amplitude which is more
1ikely to yield all the singular structure a full
amplitude can have. We illustrate the result with
a particular box diagram shown in Fig. 1. A
generalization to arbitrary masses shall be given
later.

The Feynman amplitude for Fig. 1" (spin being
neglected for simplicity) is

E(s, t) = Jd'q ((q'+ m A') [(p, + k, —q) '+ m ~'][(—p, + q)'+ m, '][(p, —q)'+ m, ']] '

multiplied by igzA, 'g~~, '/(2v)'. Let us work in the c.m. frame

p, =(0, 0, k, iEz), p, =(ksin8, 0, kcos8, iEz),

k, = (0, 0, —k, iE~), k, = (—ksin6, 0, —k cos8, iE„).
The discontinuity across the usually normal unitarity cut is obtained by replacing (q'+mA') '[(p, + k,

—q)'+m„'] ' with (2mi)'5~(q'+mJ, ')6~[(P, +k, —q)'+m„'] in (1). These two 6 functions give

qo
=

2 (8 + m A
—m g )S (8)

and

~q~'= —,'(s —s„)(s —s„,)s ', (4)

where s„=(mA+m„)', s„,= (mA —m~)', and s„ is the normal threshold.
The discontinuity across the triangular anomaIous cut is given by further substitution" of 2+i 5~[(—p,

+q)'+m„'j for [(—p, + q)'+m„'] ' in (1). In addition to (3) and (4), we have

k'q, '= ——,'m, '(s —s,)(s —s, .)s ',

where q ~~

= q„q~ ' = q,'+ q, ', and

= 2Ezqo —m z' —m~'+m, '

(6)

= 2[s' —(m z'+mA'+ 2m~')s+ (m z' —m„')(mA' —m„')]s '+m, ',

(8)

In (8), M'= m z' —m~' —m, ', and s, is the triangular anomalous threshold in the physical sheet; and
here and hereafter, the upper choice for the ambiguous sign corresponds to the first choice of the
double subscript.
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Finally, the further replacement

[(p, —q)'+ m, ']-2m i op[(p, —q)'+ m, ']

in (1) yields the discontinuity across the anomalous box cut, as well as

kq„= —,'Q(1 —cos 8)/sin8,

k'q, ' = t(4m, ' —t) (s —s,) (s —s,,)/16s k' sin'8,

where

(s s ) = (m '+ m ') + 2(4m, ' - t) '&m „'I'+ [(4m, ' —t)m, ' -M'J'~'[(4m, ' —t)m„' -m „'J'~'].

(9)

(10)

s„which depends on t, is the box anomalous threshold in the physical sheet.
The kinematical interpretation of these thresholds is now clear; s„ is such that iql'= q„'+ q,'+ q, '=0,

s, corresponds to the condition that q, '= q„'+ q, '= 0, while s, is the point at which q, '= 0. We thus have
a feeling that both s, and s, are a kind of threshold. Let us recall that we have a scattering occurring
in the xz plane, with the initial particles moving in the z direction, and t & 0.

We also look at the deuteron problem (Fig. 2). With d = (0, 0, k„-,is'~'), d =- (0, 0, —k„2is'~'), and put-
ting all three nucleons on the mass shell, we obtain q, = ~s'~', k~q, = —,(s —2m„'), and k~'q~'= —4m„'(s
—s~), where s, = 4m, ' -mz'm~ '. s, is the well-known anomalous threshold associated with the deu-
teron form factor.

It is easy to generalize (8) and (11) to more general mass cases (Fig. 3). We shall always work in
the c.m. frame of A and 8 (or C and D), with scattering taking place in the xz plane.

For Fig. 3(b), we define

Q,. = —,'[s' —s(mA'+ms'+ms'+m~')+ (m„2 —mR' )(ms' —m„')]s '+mo'. (12)
Then

k; q~
= 4m~ (s —sg )(s —sgt )s

by making use of

Q —4k, '~q~'=m~'(s —s, ')(s —s,,')s ',

(13)

where p, = (0, 0, k, , iE„'), E„"=k,'+m„', etc. The subscript or superscript i denotes that 2 and B are
moving along the z direction.

For Fig. 3(c), we instead choose C and D along the z axis (and distinguish it by an index f). Then

(14)

p, = (0, 0, k&, iE, ), etc. , as one has an equal Q& obtainable from Q, by the substitution (m„, ms, m~)
-(mc, m~, m„).

Finally, for Fig. 3(a), we obtain in either frame

4k,.'kz' sin'8 q,
' = 4k,.'kz'~q ~' sin'8+ 2Q;Qzk, kz cos8 —k,.'Q&' —k&'Q,

'

,'(t —t„)(t —t„,)(s —s,—)(s—s„)s '

= ——,R(s, t)s ',
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FIG. 1. Box diagram possessing both triangular and
box anomalous thresholds in the physical sheet. FIG. 2. Deuteron triangle diagram.
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where

(f —t„)(t —f„,) = t' —2f(mc'+m~')+ (mc —m„)',

q' p, q k, q p, q

1 q Pl Pl ~1 Pl P2
Z(s, t) =16

1 q Pl 1 1 1 P2

P2 q Pl P2 1 P2 P2

Whether s, ', s, , and s~ of this general diagram show up in the physical sheet or not depends on the
usual criterion that

m~(mR'+mc' —m„')+mR(mR'+mc' —mR') (0, mz(ma +me c )+ s( z +ma mn )

C

P2

k, —
8

-p, +qik G

F

p, +k, -q

M)kp -q

k
2

D

0

and both conditions are satisfied or not, respec-
tively. (13), (14), and (15) do not depend on

these conditions, however.
Thus, in the first octant of a three-dimensional

Iq„l- Iq„l- jq, l space (Fig. 4, which is a kind of
"phase space" allowed for the vector I pi), among
all allowed configuration of (Iq„ I, Iq, I, Iq, I), s„ is
a singular point located at the origin (fixed), s,
is another singular point sitting (somewhere)
along the z axis (a function of the external mass-
es), while s, is another singularity lying (some-
where) in the xz plane (a function of t and the ex-
ternal masses). Since lpl' is negative below the

normal threshold, q„', q, ', and q,
' are not nec-

essarily all positive definite. Thus s, (corre-
sponding to lqI'= q„'+ q, ') can be greater than,
equal to, or less than s, (corresponding to I jl'
= q, '), depending on the value of t. Also, depend-
ing on the external masses, s„, s„and s, can
coincide with each other.

It should be interesting to see if in nature s~
&s, when these singularities can be promoted
above s„. It should also be interesting to try a
parametrization in terms of the relevant vari-
ables (q, ' or q, ') in the neighborhood of an
anomalous threshold, should there be any observ-
able effects associated with these singularities.

The author is indebted to Professor J.J. de
Swart for a suggestion to investigate the anoma-
lous thresholds in hyperon-nucleon scattering,
which led to the plausible kinematical interpreta-
tion for these singularities given above. He also
acknowledges useful communications with Profes-
sor R. Blankenbecler of the Stanford Linear
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FIG. 3. General-mass box diagrams.
FIG. 4. "Phase-space" and the positions of the nor-

mal (s„), triangular (q), and box (g) thresholds.
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Accelerator Laboratory and Dr. J. S. Frederik-
sen of the University of Groningen.
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S =—(p f + 0 f) (Er, +E„)', t= —(pi -p,)
' = —2k' (1 —c os 0),

and the factors -iF are omitted.
' Or 2' 6&[(p, —q) +m', )) for [(p2 —q)'+m ~] which

has the saxne s& and same discontinuity.
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primordial turbulence in the radiation era generates a weak seed magnetic field on all
scales of the turbulence. This field is stochastically amplified by turbulence motions,
and it is possible for magnetic and small-scale kinetic energies to attain eguipartition
within an expansion time. Field generation ceases at the epoch of equal radiation and
matter densities, when the field strength is of the order of 1 G. It is estimated that the
present intergalactic magnetic field has an intensity of -10 G and a sca].e-].ength of -1
Mpar sec,

An initially chaotic universe possesses many
attractive features. ' In particular, the chaotic
inhomogeneities that survive in the extreme ear-
ly universe will, quite probably, generate later
a state of primordial turbulence in the radiation
era. The significance and importance of primor-
dial turbulence in galaxy formation, first stressed
by von Weizsacker and Gamow, has been inves-
tigated and discussed by many authors. 4 It has
also been proposed that, turbulence generates rel-
atively intense magnetic fields during the radia-
tion era of the early universe. '

The radiation era, in which blackbody radiation
is more dense than matter, extends from t -10
sec to t-10' yr, where t is the Friedmann age.
It is shown' that uniform rotation in this era gen-
erates the weak magnetic field

B= —o.f = - 2 ~ 10 4& G, (1)

where P is the vorticity, and n=e/m„c for a
hydrogen plasma. From the ion equation of mo-
tion we obtain'

(d/dt)[R'($ +al3)] =R'.($,. + o.'B) Vv, ,

in which d/dt = &/Bf+ (u+ v) V follows the motion;
7'&& v= f, where v is the subsonic turbulence ve-
locity; and V u = 3R/R, where u is the expansion
velocity and R(t) is the scaling variable. Hence,
if the rotation were uniform, then

(3)

where subscript 1 denotes initial values and B,
= 0. In a radiation-dominated plasma the elec-
tron and photon gases are tightly coupled by
Thomson scattering and their vorticity P varies
as R '. The magnetic field of (3) is therefore
generated in order to maintain (,. =g thus giving
(1) when R&)R,.

The term on the right-hand side of (2) is re-
sponsible for stretching and winding field lines
when rotation is nonuniform. Consequently, in
a turbulent radiation era, a seed magnetic field
on the order of magnitude of (l) is generated on
all scales of the turbulence, and is then acted
on and amplified stochastically by turbulence
motions.

The ultimate state of an initially weak mag-
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