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An explicit calculation shows perturbation theory to be arbitrarily good for the deep
Euclidean Green's functions of any Yang-Mills theory and of many Yang-Mills theories
with fermions. Under the hypothesis that spontaneous symmetry breakdown is of dynami-
cal origin, these symmetric Green's functions are the asymptotic forms of the physical-
ly significant spontaneously broken solution, whose coupling could be strong.

Renormalization-group techniques hold great
promise for studying short-distance and strong-
coupling problems in field theory. " Symanzik'
has emphasized the role that perturbation theory
might play in approximating the otherwise un-
known functions that occur in these discussions.
But specific models in four dimensions that had
been investigated yielded (in this context) dis-
appointing results. ' This note reports an in-
triguing contrary finding for any generalized
Yang-Mills theory and theories including a wide
class of fermion representations. For these
one-coupling-constant theories (or generaliza-
tions involving product groups) the coefficient
function in the Callan-Symanzik equations com-
monly called P(g) is negative near g=0.

The constrast with quantum electrodynamics
(QED) might be illuminating. Renormalization
of QED must be carried out at off-mass-shell
points because of infrared divergences. For
small e', we expect perturbation theory to be
good in some neighborhood of the normalization
point. But what about the inevitable logarithms
of momenta that grow as we approach the mass
shell or as some momenta go to infinity? In
QED, the mass-shell divergences do not occur
in observable predictions, when we take due
account of the experimental situation. The re-
normalization-group technique' provides a some-
what opaque analysis of this situation. Loosely
speaking, ' the effective coupling of soft photons

goes to zero, compensating for the fact that
there are more and more of them. But the large-
r' divergence represents a real breakdown of
perturbation theory. It is commonly said that
for momenta such that e'1n(p'/m') -1, higher
orders become comparable, and hence a calcu-
lation to any finite order is meaningless in this
domain. The renormalization group technique
shows that the effective coupling grows with mo-
me nta.

The behavior in the two momentum regimes is
reversed in a Yang-Mills theory. The effective
coupling goes to zero for large momenta, but
as p"s approach zero, higher-order corrections
become comparable. Thus perturbation theory
tells nothing about the mass-shell structure of
the symmetric theory. Even for arbitrarily
small g, there is no sense in which the interact-
ing theory is a small perturbation on a free mul-
tiplet of massless vector mesons. The truly
catastrophic infrared problem makes a sym-
metric particle interpretation impossible. Thus,
though one can well approximate asymptotic
Green's functions, to what particle states do
they refer?

Consider theories defined by the Lagrangian

2 = —4Eq,'E'"'+i iy, y D;; g;,

where

s ~ o++f ~&~~ &~ ~
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the f'" are the group structure constants, and
the T' ar e r epr esentation matric es cor respond-
ing to the fermion multiplet. (One may be inter-
ested in models with massless fermions because
of their group structure or because they have
the same asymptotic forms' as massive theo-
ries. ) The normalizations of the conventionally
defined irreducible vertices for n mesons and
n' fermions, I'"'", must refer to some mass
)if. The renormalization-group equation reads

8 8 n n'
M —+P(g) —+ny (g)+n'y&(g) I'"'" =0. (2)

Putting it in this form makes use of the first
available simplification, proper choice of gauge.

Equation (2) describes how finite renormaliza-
tions accompanied by a change in g and a rescal-
ing of the fields leave the I""'" unchanged. Con-
sider gauges defined by e in the zeroth-order
propagator

)
g p p p p p

Pv p2
+

p4

The generalized Ward identities' imply that there
are no higher-order corrections to the longitu-
dinal part. But if the fields are rescaled as in
Eq. (2), n must be changed to leave I' invariant.
Hence n should occur in Eq. (2) much as g does,
and one would have to study the I'"'" for arbi-
trary n to determine the coefficient functions
perturbatively. But for n =0 initially, it re-
mains zero under finite renormalizations; so it
suffices to study the theory in a Landau gauge.

1

To first order, the meson inverse propagator
is

r„,"'(p, —p) = &"(—g„,p'+p„p, )[1+( —", c, ——,
' c,)(g/4m)'ln(-p'/M')j,

where

f„4 f„„=2c,6„, tr(T'T') = 2c,6„,
[For SU(2), c,=1, c,(isodoublet) = 4, and c,(isotriplet) = l.j To first order (only),

the fermion self-energy is proportional to the self-energy in massless QED, which vanishes in the
Landau gauge. Similarly, the contribution to the fermion-vector three-point vertex correction pro-
portional to the first-order QED correction needs no subtractions and contains no reference to M.
Calculation of the remaining correction, involving the meson self-coupling, yields

r&;,'"(0,p, p) =gT; y„-[1 —'c, (g/4~)' ln( —p'/M') j.

Applying Eq. (2) to these functions at their normalization points yields

y4 (g) = 0+ O(g'), y~(g) = (—", c, ——,
' c2)(g/4m)'+ O(g'), p(g) = —(—", c, —

2 c2)g(g/4w)'+ O(g').

(4)

It is also apparent, by inspecting the graphs, that to this order the coupling constants of product
groups do not enter into each other's I6 functions.

For the case where there are no fermions, the coefficient functions can be obtained by setting c, =0.
(Even though the fermion-vector vertex, which had been used implicitly to define g, is no longer pres-
ent, it can be simulated by introducing two multiplets of spinor fields with the same group transfor-
mations but opposite statistics. The physical effects of internal fermions are canceled by the ghosts—spinor fields with Bose statistics. ) Alternatively, one can study the corrections to the three-meson
vertex. Define I" by

r,„,""(P, P, o)=f"'(P,g„—, +P„g,„-2P,g,„)gF(p /M', ).

The normalization condition is F( 1,g )=1-
(up to a phase convention. ) To first order

F = 1+ —67c, (g/42)' in(-p2/M') (6)

which yields the same P as described above.
The renormalization-group "improved" per-

turbation theory ' extends results valid near the
normalization point by effectively moving that
point. The improved vertex functions are con-

structed from the straightforward perturbative
ones, involving a momentum —scale-dependent
effective coupling g'(g, t), where t = 2 ln(s/M')
and s sets the scale, e.g. , s =Q( —p, '). g'(g, t)
is defined by

c

8g'/at = p(g'),

g'(g, o) =g.
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For the approximate ti's derived above, P = —bgs,

g"~g'/(1 + 2bg~t).

Thus for a pure meson theory or for theories in-
cluding not too many fermions (in the sense that

c2 & '4'c, ), g' goes to zero for asymptotic mo-
n'

menta, i.e. , t- ~. The I'"'" show a well-de-
fined slow approach to quasifree field values.

It is worth remembering that successive or-
ders of perturbation theory give the behavior of

P for infinitesimal@ and, strictly speaking, say
nothing about finite g. Making a polynomial fit
to a perturbative result for P is pure conjecture.

Hypothesizing that P stays negative (at least
into the domain of strong coupling constant) re-
lates all theories defined by Eq. (1) [with g less
than the first zero of p(g)] to the model with g
arbitrarily small by a change in mass scale.
They all share the same asymptotic Green's
functions, differing only by how large is asymp-
totic.

To utilize this result, we make the following
hypothesis: The gauge symmetry breaks down

spontaneously as a result of the dynamics. Con-
sequently, the fields obtain (in general massive)
particle interpretation —the Higgs phenomenon.
As yet, nothing is known about the particle spec-
trum, the low-energy dynamics, or particles
describable only by composite fields. But the
Callan-Symanzik analysis says that the asymp-
totic Green's functions for the "dressed" fun-
damental fermion and vector fields are the sym-
metric functions discussed above. '

[An alternative is to introduce fundamental
scalar fields, in terms of which the group trans-
formation properties of the vacuum can be stud-
ied. ' But these theories are not in general ultra-
violet stable in terms of the additional coupling
constants that must be introduced. Particular
models which are ultraviolet stable as well as
spontaneously asymmetric have been found. "
But gauge theories of fermions (only) have aes-
thetic attractions, including the possibility of a
dynamical determination of the dimensionless
coupling constant. ~]

Hypotheses of this type go back to the work of
Nambu and collaborators. " In the renormaliza-
ble massless theories including scalars that have
been studied, ' infrared instability is a necessary
condition for spontaneous symmetry breakdown. '
The model of Nambu and Jona- Lasinio can be
treated by the methods of Coleman and Wein-

berg. ' The model is defined by

& = 4~ &&+~.[(f»)'- (&,e)'1

and the stipulation that the momentum integrals
are cut off at some Euclidean mass squared A'.
Define a scalar

V(~) =a.F(~)((x)

and an analogous pseudoscalar, which one can
do because of the cutoff. A study of the Green's
functions in the one-loop approximation yields
all the original results. But the existence of the
vacuum-degenerate solution requires the dimen-
sionless parameter characterizing the theory to
satisfy go A ) 2~ . But this is the condition that
the one-loop correction to fermion-fermion scat-
tering be at least as important as the tree ap-
proximation.

The situation is similar in the renormalizable
models. Xp' is stable for small A. because the
one-loop corrections are small. But in mass-
less scalar QED, photon-loop corrections of
order e4 can dominate over the lowest order y-
y scattering (order A. ) for both A and e arbitrar-
ily small. The requirement is just that A. &e'.
In this light, the problem with the Nambu-Jona-
Lasinio model is not its nonrenormalizability
but that in the domain of largeg, A, where spon-
taneous breakdown is alleged to occur, higher
loop corrections are likely to dominate. (In the
framework of the original solution, more com-
plex infinite chains and self-energy graphs dom-
inate over the ones studied. ) In theories defined
by Eq. (1), composite scalar densities can also
be defined and studied in perturbation theory.
But the condition that the one-loop approxima-
tion imply vacuum degeneracy requires that the
expansion parameter be large, rendering the ap-
plication of perturbation theory suspect.

The author thanks Sidney Coleman and Erick
Weinberg, who have offered insights and advice
freely, and the latter especially for his help in
the computations.
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C-0030.
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PRECESSION OF POSITIVE MUONS IN NICKEL
AND IRON. M. L. G. Foy, Neil Heiman, W. J.
Kossler, and C. E. Stronach [Phys. Rev. Lett.
30, 1064 (1973)].

In the abstract, the last sentence which reads
~ ~ the internal fields are: = 150 6 for Ni and

~ ~ ~" should read "
~ ~ the internal fields are:

= 1500 G for Nx and .

HADRON PRODUCTION BY ELECTRON-POSI-
TRON ANNIHILATION AT 4-GeV CENTER- OF-
MASS ENERGY. A. Litke, G. Hanson, A. Hof-
mann„J. Koch, L. Law, M. E. Law, J. Leong,
R. Little, R. Madaras, H. Newman, J. M. Pater-
son, R. Pordes, K. Strauch, G. Tarnopolsky, and
Richard Wilson [Phys. Rev. Lett. 30, 1189 (1973)].

In press, a sentence was truncated on page
1190„second column, first paragraph. It should
read "~ ~ ~ 31 two-prong, 29 three-prong, 20
four-prong, and 8 five-prong events. "
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