
VOLUME 30, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 1975

cause the observed discrepancy. Uncertainties in the
E&3 form factors also can contribute.

Here we use the current world average for I'(Ei.~

—& 71 )jl (Ki. —all) as obtained by the Particle Data
Group, Lawrence Berkeley Laboratory Report No. 100,
1972 (unpublished) .
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The equilibrium thermodynamic conditions obeyed by a pion condensed system are giv-
en. These include the statement that the average spatial currents of conserved quanti-
ties must always vanish in the state of lowest free energy, even for 7I condensation in-
to a running-wave mode. The physical significance of pion-condensation thresholds is
also discussed.

The possibility that the pion field in dense nu-
clear or neutron-star matter may develop a mac-
roscopically occupied mode, or condensate, has
recently been explored by several authors. ' 4 In
the normal state of these systems, the ground-
state expectation values of y„ the neutral pion
field, and q&, the charged (rr ) field, vanish as a
result of parity conservation, and for (y& as a re-
sult of charge conservation as well. Pion-con-
densed phases are states of broken symmetry,
characterized by a nonvanishing (p& for rr con-
densation, while in a rr' condensed system (p,&

40. The main purpose of this Letter is to derive
the equilibrium thermodynamic conditions that
are obeyed by the ground state, or, more gener-
ally at finite temperature, by the state of lowest
free energy of a pion condensed system.

The first result we need, one familiar from the
microscopic theory of superfluidity, is that the
condensate wave function (y(r, t)& must vary in
time as exp( —ip, t), where , tt, is the rr chemical
potential. To see this we note that in a 7t con-
densed phase, the ground-state energy E = (H), or
the free energy I =E —7'S at finite temperature,
is a functional of (y(r, t)), (rr(r, t)) (where rr is the
momentum conjugate to y), as well as (rtrt(r, t)&

and (rrt(F, t)). For fixed expectation value of p„
=i(pter —rrtp), the ground-state energy (H) must
be a minimum under variation of (p& and (rr&, or,
under an arbitrary variation, 5(H& = p, , 5 (p, &.

Consider a variation that adds c-number fields
to (p& and (rr& Then s.ince 5(p, &=i(yt& 6(rr&+ 5(pt&
x &rr&+ c.c., and l5(H) = (5H/br& 5(rr&+ (C5H/sip& 6(p&
+ c.c., we have, on comparing coefficients of
l5(pt&, and of 5(rrt&,

«H/bn'&-=(i&= —tt .&W&,

(6H/5p t& =- —&r'r& = i tt „(rr&

Thus

(2)

The m' chemical potential vanishes and so for a
condensed neutral 7r' field (yo& and (rro& are con-
stant in time.

The density of condensed m, the net charge
associated with the macroscopically occupied
pion mode, is given by (p, & „„d= —21m((cp& (rr&).

%hen terms in the interaction Lagrangian con-
taining cp can be neglected, as in the nonrelativ-
istic limit. of the pseudovector coupling, then
~=i and' &t .&...d =2tt, l(W(r)&l'.

Combining Eqs. (1) we find the expectation val-
ue of the m field equation:

(tt„' —rrt „'+V') (y(r)& —J(r) = 0,

where J(r) = —(t'ai;„, /&p (r)& —ill, (5L;„,/bj t(r)&
is the source of the condensed-pion field and L;I
is the interaction Lagrangian. Equation (3) deter-
mines the condensate wave function in terms of
the source J(r). The threshold for rr condensa-
tion is the first point at which the field equation
(3) can be satisfied; below threshold J(r)=0. Ex-
panding J(r) to first order in (y(r')& and using
5J(r)/5(y(F ))=II(r, r; rd = tL, ), the rr self-energy
in the medium, we see that the v -condensation
threshold is the point where JD '(r, r', lL, )(cp(r')&
&& d r ' = 0, i.e. , where the pion Green's function
D, for (y&=0, has a pole at frequency tt, . Above
the threshold, however, the amplitude of (rtr& is
determined by (3), not by the equation for D (which
describes the fluctuations in the pion field). A
point at which D„ the m' Green's function (for
(p, &

= 0), develops a pole at ~ = tL „=0 would be a
m' threshold. '
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What is the physical significance of a pion con-
densation~ It is instructive to compare it with
the case of a hypothetical real scalar meson
field v coupled to the nucleon density. There the
source of the o' field (the nucleon density) and
thus (a) is always nonzero; (v) is essentially a
nucleon self-energy field. There might occur a
density however at which the v Green's function
develops a pole at ~= p, =0. Such a pole would
simply reflect a pole in the density-density cor-
relation function of the nucleons at & = 0 and
would signal a phase transition of the matter anal-
ogous, if the pole is at. k=0, to a gas-liquid tran-
sition; if the pole occurs first at k &0 the tran-
sition would be to a state with a spatial nucleon
density inhomogeneity. Such a transition could
equally well be described without explicit intro-
duction of the o field as long as the interaction
of the nucleons due to o exchange is included,
and retardation is neglected. There would be no
new physics in "v condensation. "

The nonrelativistic source Jo of the m' field is
-V [(4 ~a+~) —(4„~a +„)], the divergence of the
isospin T = 2 nucleon spin polarization. Even
though the spin polarization can be nonzero, as
in a nucleus with nonzero total spin, or in the
presence of a magnetic field, its divergence, a
pseudoscalar, must vanish in states of definite
parity. A pole in D, (co = 0) would reflect (for a
nonrelativistic source) a corresponding pole in
the longitudinal T= 2 spin susceptibility of the
matter at finite wave number; it would signal a
phase transition to a state with a spatially vary-
ing spin order for which V (o) 40, a parity-non-
conserving m' condensed phase. The order pa-
rameter (p,) of this phase is real. On the other
hand a ~ condensed phase is physically very dif-
ferent since here the order parameter (y) is gen-
erally complex. A phase in which (y) 40 is super-
conducting, and is one in which there is an effec-
tive "pairing" of neutron particles with proton
hol. es, and proton particles with neutron holes.
(Note that the nonrelativistic source J of the z

field is -V (g~~o 4„), which must be nonvanish-
ing if (cp) c0.) The onset of v condensation in
nuclear or neutron star matter would be indicated
by the range of the normal state correlation func-
tion (4& (r, )C „(r,)4 „(r,)4~(r~)) becoming infinite
as a function of ~r, —r, ~.

We turn now to the thermodynamic conditions
governing an equilibrium state of 7I condensa-
tion. Equilibrium under the reaction n —P+ m

implies that j[L, = ILL„—p~, the difference of the n
and P chemical potentials. ' Quite generally, for

any species i present in neutron star matter p,.
=b,. p, „—q,. p, , where p. , is the electron chemical
potential, b, is the baryon number, and q,- the
charge of species i. A more subtle question is
what are the average velocities of the various
components in the ground state. In a mixture of
gases in which the number of each species is a
constant of the motion, the spatial average of the
ground-state expectation value of the particle cur-
rent of each species must vanish. Sawyer and
Scalapino, ' in constructing their ground state for
a m -condensed system with (y)-e'"' ', imposed
ad hoc the constraint that the average neutron
momentum be zero, and that the average proton
momentum be equal to and opposite the average
pion momentum (computed as if the pions were a
free field). Such a state has a nonvanishing bar-
yon current. The correct condition, which is
quite different, is that in a system in which the
particles can change their identities, as in an e,
n, p, z system, the spatial averages of the spa-
tial (three) currents of the conserved quantities
(here the baryon, charge, and two lepton cur-
rents) must vanish.

The proof follows from the fact that the ground-
state energy must be invariant under an infini-
tesimal gauge transformation 4,.(r)-exp[iA, (r)]
&&4,(r) of the complex fields, where for the boson
fields, we transform p, and ~, by the same A,. in
order to leave p,. invariant. Under such a trans-
formation B is transformed into

II++, J j, (r).PA, (r) d'r,

plus terms of the forms, e.g. ,

f(exp (~ [A,(r) + A~(r) —A„(r)]] —l)X'(r) d'r

+ H. c.,
where K'(r) is the sum of terms in the Hamilto-
nian density that transform ~ +p into n. Here
j,.(r) is the current of species i. Let each of the
A,. be of the form

A,.(r) =Q a,.A„(r),

where the sum is over the four conserved quan-
tities, indexed by n=b (baryon number), q
(charge), l (electronlike lepton number), and f'
(muonlike lepton number). [Thus for o. = q, o.',. is
the charge of the particles of species i.] The A„
are four independent functions. Then the conser-
vation laws of baryon number, charge, and lepton
numbers in the interaction Hamiltonian will guar-
antee that the terms of the form (4) in the trans-
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formed II will vanish. In this case

P-P+ fd rQ„j (r) ~ VA„(r),

where j (r) =Q;o.;j;(r) are the four conserved
currents. Since (H) must be a minimum under
the gauge transformation (6) we must have, for
each o.',

Jd'r(j„(F)) VA„(r) = 0. (6)

If we choose A of the form a r (where a=const)
then (6) implies that j„, the spatial average of

(j„(F)), vanishes. In a spatially uniform system
the currents (j,), (j,), (j,), and (j,,) must vanish
locally. Choosing the A's to vanish at infinity
and integrating (6) by parts, we find in general
that V ~ (j„(r))=0. When the A,. are arbitrary in-
finitesimal constants, the expectation values of
terms of the form (4) must vanish; this implies
that each Jd'r (K'(r)) is real, and also that the

spatial average of J(r)/(y(r)), Eq. (3), is real.
In applications to neutron star matter, one is

concerned with states containing no neutrinos.
The lepton currents are thus simply the electron
and muon currents, and hence j, and j, the spa-
tial averages of the electron and muon currents,
must vanish. In a system containing only e )L(, ,
n, and p under p equilibrium, the conditions j, = 0
and j,= 0 then imply j~= j„=0. By contrast, in a
system containing more degrees of freedom, say
e, p. , n, P, and m, then all we can conclude
from j = 0 is that j, = j~ = —j„, but these j need
not vanish individually. '

We emphasize that the average electromagnetic
current j, vanishes in the state of lowest energy,
even for a running-wave n condensate (y) -e&"' '.
For such a state, a variation in k, at fixed j,= j,
= j,.= 0, produces a variation in the energy per
unit volume 5&= j, 6k. This may be derived from
the gauge-transformation arguments above. Thus
choosing k to minimize e is equivalent to setting

j,= 0. It should be noted that in the presence of
velocity-dependent forces, such as the pion-nu-
cleon pseudovector coupling, the pion current is
not simply related to p,k; in fact in the calcula-
tion of Ref. 2 they should be oppositely directed.
The general differential of the energy for the run-

ning-wave 7t case is

«(p;, ((p) [, k) = Q; p. ; dp;+ fd ( (y) ~'+ j, dk, (7)

where f= —p. „'+rn„'+ k'+ 4/(y) is the left-hand
side of the pion field equation. In equilibrium,

Q,.p,. dp, = p, „dp, . Condensates with k slightly
different from its ground-state value correspond
to supercurrent-carrying states.

Detailed model calculations will be reported
later. ' We mention here that in the simplest
model of n condensation consisting of noninte~-
actieg n, P, and e with only a condensed-pion
mode interacting with the nucleons, via a non-
relativistic pseudovector coupling, plus an s-
wave m-N interaction, the condensation sets in
at p, =0.062 fm, corresponding to p.„=30.8
MeV; k at threshold equals 1.1 fm '
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5This relation differs from the free-field relation em-
ployed in Refs. 2 and 3, between the pion field and

(p~)„.«d. Equations (2) also imply that the value of the
pion Hamiltouian is not simply (p~)~»d times the free
pion energy.

~In symmetric nuclear matter without pion condensa-
tion p„= p&, and thus p„=0 at a n. -condensation thresh-
Old .

70f course, the momentum of the state of lowest en-
ergy should vanish.
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