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peaxs to decxease the growth length insignificant-
ly except for short axial wavelengths, which are
not observed.

In summary, the characteristic features of the
diocotron instability correlated well with the ex-
perimental observations. It appears that the beam
distortion is produced at early time, i.e., before
f& ys ', and when breakdown of the background
gas occurs shortly thereafter, it occurs along the
distorted path of the beam, and the beam follows
that path for the remaining 40 nsec.

We have benefitted greatly from our discus-
sions with M. Lampe and H. N. Sudan, and we
would like to thank H. Covington for his expert
technical assistance.
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Two intense electromagnetic waves interact strongly where the local plasma frequency
equals their difference frequency, resulting in an irreversible transfer of action from
the higher-frequency wave to the lower-frequency wave, The amount of transfer depends
only on the intensities and the density scale length. Successive transfers among a set of
waves may produce efficient plasma heating.

Interest in the nonlinear interaction between
coherent eleetxomagnetie waves arises from the
possibility of exciting longitudinal plasma modes
in an underdense (~~ «&u) plasma by resonance
with the difference frequency of two lasers, '
thereby heating the plasma upon damping of the
longitudinal modes. This process has been stud-
ied by Rosenbluth and Liu' for an inhomogeneous
plasma, but neglecting the reaction of the longi-
tudinal mode on the transverse waves; and by
Cohen, Kaufman, and Watson, including the re-
action and allowing for a cascade, but for a ho-
mogeneous plasma.

The present paper treats the transfer of ener-
gy between two transverse waves (of frequencies
&u„ru, with v, &a&, ) in a plasma density gradient.
The mechanism of the transfer is the resonant
excitation of an electron longitudinal mode at the
beat frequency ~=—~, —v, and beat wave number
K=—k, +)'t, (for the optimum case of opposed las-
ers, which we consider for definiteness). The
excitation occurs over a zone of thickness tt - (v/
co~)L about the surface where c'~ = 0; L.is the

density scale length, and ~ the longitudinal damp-
ing rate.

We stress two important conclusions': (l) The
dominant effect of the process is the transfer of
action AZ from the higher-frequency (vo) wave
to the lower-frequency (&u, ) wave, transverse
action being conserved. Accordingly, the energy
loss uo4Z of the mo wave is partitioned, with

~, 4J going to the ~, wave, and @&4 being irre-
versibly deposited in the plasma. The maximum
heating efficiency is thus &/wo. (That this ratio
is low for an underdense plasma led us in Ref. 3
to suggest cascading; we return to this below. )
(2) The total amount of action transfer depends
on the input power and on the density scale, but
is indePendent of the damping rate' v (as long as
WEB conditions are satisfied: h»tt '). There
is thus no need to be concerned with the damping
mechanism, be it eollisional, Landau, or non-
linear .

Our formulation of the interaction is in terms
of the local longitudinal dielectric function, and
thus is quite model independent. For simplicity
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of presentation, we ignore ion dynamics, but its
inclusion is straightforward. As a byproduct of
the calculation, we obtain the exponential spatial
growth of Raman back-scattering instability;
our result is identical to that of Liu and Rosen-
bluth, ' although our basic assumptions a.re some-
what antithetical to theirs.

After treating the problem of two opposed la-
sers, we consider using additional lasers to cas-
cade the action to still lower frequencies, with
each step providing an incremental efficiency
—0/~. We find that this induced cascading, with
alternate laser directions (see Fig. 1), appears
feasible, in that the intensities required are be-
low the effective Raman instability threshold,
as determined by Mostrom et al. ' On the other
hand, self-induced cascading, ' which requires
two equally intense parallel lasers, is effective
only for intensities well above this threshold. '

For simplicity, we treat the case of one-dimen-
sional spatial variation (density gradient, propa-
gation, and amplitude modulation all along z),
polarization of the transverse waves along x,
and steady-state amplitudes (corresponding to
intensities below the absolute instability thresh-
old~). The dimensionless vector potential a(z, t)-=eA„(z, t)/mc' satisfies the nonlinear wave equa-
tion~

(V' —c '[S'/Bts + &e~'(z )]ja = —a V~/,

where the term in the dimensionless scalar po-
tential, g(z, t)—= ey(z, t)/mc', is the nonlinear
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FIG. 1. Schematic space-time plot of a three-step

cascade, using four lasers, at frequencies uo&~&&~&
&~3, propagating in alternate directions. Intensity is
represented by line thickness. Each line represents a
continuous family of parallel lines, corresponding to
steady-state intensities, At each resonance of a differ-
ence frequency with the local plasma frequency (~& ——~0

p =g —p ~p =p —+p) most of the actionII III

of the higher-frequency wave is transferred to the low-
er-frequency wave of the interacting pair. A small
fraction (~ &u&/u) of the wave energy is deposited locally
in the plasma at each transfer.

part of the transverse current density. The vec-
tor potential is expressed in terms of the ampli-
tudes of the two opposed transverse waves:

a(z, t) —= a, (z) exp[-i&/+i f ko(z')dz']+a, (z) exp[ —i&@,t —i f k, (z') dz']+ c.c. ,

where k, '(z)c'=- ~,' —~~'(z), t =0, 1. Upon substituting into the wave equation, we obtain the coupled set

8
D,a, = —+co —+ 0 a, = . a,gs,

8$ BZ BZ J 2SNO

8 8 Bink ' K g'
D~a~ —— —c~ + a~ = . aors~Bt Bz Bz J 2sco&

where the first two terms are the convective de-
rivatives (s/Bt vanishes here; c, —= k, c'/&u, is
the group velocity), the third term produces the
WKB variation a, -k, ", and the coupling in-
volves the local Fourier amplitude ps —= t/i(&, K;z)
of the scalar potential at the beat frequency and
wave number. On the left-hand sides of (1), we
have neglected second derivatives of a„on the
right-hand sides we have kept only the potential-
ly resonant terms.

To determine gs, we note"' that the Lorentz
force is equivalent to a ponderomotive potential

gz„(z, t) = 2a (z, t), so that its Fourier amplitude
is p&„(&,K;z) =a, (z)a, *(z). The local longitu-
dinal response of the electron plasma to this po-
tential is then given by Ps =gz„(Q, K;z)[e '(Q, K;
z) —1], in terms of the local dielectric function.
With these expressions substituted into (1), we
obtain

D,a, = (K'c'/2i&u, ) ~
a, ~

'a, (e ' —1),

D,a, = (K'c'/2i&u, )~a,~'a, (s '* —1)
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(1 —67/J")(1+ AJ/J, '")

= exp[8 w'L (J,'" —J,"' —b,J)], (4)

where J,"= Jo (z &z„) and J,'"=J, (z &z z) are the
input action flux densities. This transcendental
relation yields ~J as a function of J'", J'", and

L, and is independent of the dissipative mech-
anism and magnitude. All that is required of the
dissipation is that it be not too large" (v«u~)
and not too small" [v/&u~ » (k,L) ']

Equation (4) can be converted to the formula

J =(1 -R —p) 'in[(1 R)(p+R)/p]- (5)

for the dimensionless input action J, =—8v'LJ,'"
needed to produce a relative action transfer R
—= &J/Jn"' for given input ratio p—= J"/J, "'. This
relation is plotted in Fig. 2. The relation be-
tween J, and input power density (in units of 10"
W/cm') is Po"=-;-JL, '(wo/w), where w= 1.8
x10' sec ' is the frequency of a CO, laser.

It is now convenient to introduce the action flux
density for each transverse wave. Since the wave
energy density is W, = v, 'la, l'(mc/e)'/2m, the
(absolute) action flux density is c, W, /~, == (k, /
2v)la, l'(mc'/e)'. In our natural units we thus
define J, (z)—:(k, /2m)~a, l', and convert Eqs. (2) to

dJ,/dz =- dJ, /dz = 8wJ,J, Im e

where 8-=2K'/kP, —8 for &«n.', . Noting that
Im& '&0, we see that the ~, wave loses action
flux as it propagates to the right (increasing z),
while the ~, wave increases action flux as it
propagates to the left. The invariance of the
signed action flux J—=J,—J, represents action
conservation. The irreversible dissipation of
energy by nonlinear coupling follows from (8):
d(&u, Jn —~, Z)/dz =8~0 Jn J, 1m' ', the left-hand
side being the divergence of the (signed) energy
flux density.

To solve Eq. (8), convert it to d ln(J/J, )/dz
= —Kv Jim& '(O, K;z) and integrate across the
resonant zone z -zs (where e = 0), obtaining

b, ln (J,/J, ) = F7t Jfdz Im e ' (0,K;z ),

with &f= f(z &z„)—f(z-&zz). To evaluate the in-
tegral, consider the limit Ime - 0' (representing
weak damping, v«~, i.e. , a narrow resonance
zone, k «I.). Then Ime '- —rr5(e(Q, K;z)), and

fdzim~ '- ~lee(n, K;z)/szl &=-~L

(defining the scale length L precisely" ). We
finally obtain for the action transfer 4 J the for-
mula
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To illustrate the use of Fig. 2, we see that
with Jn=6, I =10 cm (so that Pn =4X10" W/
cm'), and p =0.1 (so that P, '"=4X10"W/cm'),
a fraction R = 0.8 of the action of the ~, wave is
transferred to the ~, wave. The heating efficien-
cy is = (0/wn)R = 8% for &/(un= 0.1. A number of
special cases are of interest:

(i) For p «1, R «1, Eq. (4) yields J'"'=J,"
x exp(Jn), corresponding to the exponential growth
of a small-amplitude wave in the Raman back-
scattering instability. The exponent is J, = 2P,
x (10"W/cm')L, for ~, =v, in exact agreement
with I iu and Rosenbluth. ' While those authors
neglect dissipation but include convection of the
longitudinal mode, our approach ignores convec-
tion relative to dissipation. A more general
study of the instability by DuBois and Williams, '
including both dissipation and convection param-
eters for the longitudina, l mode, again yields
this result, now independent of both parameters.

(ii) For p»1, Eq. (4) yields J,"'=J,'"' exp(- J, ).
Here the u, wave produces an exponential atten-
uation of the ~, wave, just the opposite of case
(i)

(iii) For p-o(1), Jn«1, Eq. (5) yields R =J,.
(iv) For p &1, R =1 —p, (5) yields Jn=p ' —l.

In this special case Jlout Jan and Joout Jl~ i e,
there is an exchange of actions. For exa, mple,
choo se p=0. 1; Jo 9 and Jj =0.9 are the inputs,
while 0.9 and 9 are the respective outputs.

The last example (iv) is typical of useful or-
ders of magnitude for a study of a cascade ar-
rangement (Fig. 1). Suppose we have available
four lasers with ~, =1.8&&10'~ (CO2), u, =1.6
x10", w, =1.5x10"„(d,=1.2x10", so that the
successive beat frequencies are 0=2x10", 1
x10", 3x10". With the parameters of example

FIG. 2. Helative action transfer A=DJ/Jo'" as a func-
tion of ~0, the dimensionless action input in the 0 wave,
for representative va1ues of input ratio p =J] /JO
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(iv) for the first two lasers, and L-10 cm, we
need P,'"-6&&10"W/cm, P,"-6&&10'0W/cm .
These waves interact in the zone Bt a)~=2x10'3
sec ', whereupon now PO-6x10', P, -6x10".
The exchange is repeated between the v, and ~,
lasers at co~=1~10'~ sec '; choosing P,'"-6

&& 10", the ~, wave extracts most of the power
from the a, wave, producing P, -6&&10" Py 6
x10". Thus the ~, wave has acted as a catalyst
for transferring action from wo to cu2. The pro-
cess can be repeated with ~, in an obvious way.
The heating efficiencies of the successive steps
are roughly 9%, 5/o, 16/o, with a total efficiency
of about 30%.

The study of Mostrom, Kaufman, and Nicolson'
has shown that nonlinear attenuation due to Ra-
man side- and back-scattering is effective over
a distance &I- when J,)35. The parameters chos-
en here are below this threshold, which is ex-
tremely sharp. The reason is that the transfer
mechanism for the instability is identical to that
for coherent interaction, but the former starts
from small-amplitude noise.

We have benefited from the informed encour-
agement of J. Dawson, %. Kunkel, R. Pyle, and
K. Watson; and from many discussions with
C. Max, M. Mostrom, and D. Nicholson.
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Optical quenching of photoluminescence by radiation with photon energy less than the
band-gap energy has been observed in glassy As2Se3 and As2Se3 As2Te3. The quenching
spectra provide evidence of optical absorption by a narrow band of localized states in
the gap which are involved in the radiative recombination process and which are attrib-
utable to defects or. impurities rather than to tails in the density of states extending in-
to the ga,p.

Perhaps the most striking feature of photolumi-
nescence (PL) spectra in chalcogenide glasses is
the fact that in all the glasses studied thus far' '
the luminescence maxima occur at energies well
below the band-gap energy in a spectral range of
high transparency. Kolomiets and co-workers
first observed such spectra in bulk samples of

glassy As,Se, As Te„' As,Se„"and As,S„'and
attributed them to transitions involving impurity-
like levels lying deep within the band gap. Davis
and Mott' regarded those results as evidence for
the existence of a high density of defect centers
near the center of the forbidden gap in some
amorphous semiconductors. However, Fischer
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