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Transition from Absolute to Convective Instability in a Beam-Plasma System*
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The electrostatic instability in a magnetoplasma, ~ )~«, excited by a weak electron
beam is found to be either convectively unstable (amplifying) or absolutely unstable (os-
cillating) depending upon effective plasma electron temperature and beam density. Mea-
surements of the transition between the two types agree with calculations.

In this Letter we present results of the investi-
gation of the electrostatic instability in a mag-
netoplasma excited by a weak longitudinal beam
with ~ & &e„, co= k,V, the H' wave. ' We find that
this may be made either absolutely or convective-
ly unstable by adjustment of system parameters,
which permits a direct comparison between these
types in a single experimental geometry. The ex-
perimentally observed instabilities differ in both
linear and nonlinear properties. Here we will
discuss the linear regime; results of the nonlin-
ear measurements will be published later.

It has been shown theoretically that this mode
is absolutely unstable for a cold plasma, ' al-
though this has not been clearly established ex-
perimentally. Recent experiments'4 do not dis-
cuss the possibility. In this experiment we have
found that the mode is absolutely unstable when
the plasma is effectively cold enough, but it be-
comes convectively unstable at modest tempera-
ture.

We have measured the dispersion relation in
the two cases and examined the dependence of the
transition between them on system parameters.
The results are compared with the dispersion
equation given by

E(k~ (d) 1 + Kp+ Kg Oq

where
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a~, and ~, are the plasma frequency, beam
plasma frequency, and electron cyclotron fre-
quency, respectively, z, is the electron thermal
velocity in the plasma, X = k 'v, '/2&v, ', Z is the
plasma dispersion function, V is the beam veloc-

ity, I„ is the nth-order modified Bessel function,
and k'= k~'+k, '. The potential is assumed to
have the form Z, (k~r) exp[i(k, z —~t)] and thus

the propagation is axial, with k~ determined by
transverse geometry. 8 is the beam reduction
factor which is included to take into account the
fact that the beam has a smaller diameter than

the plasma. ~~A'~ is thus an effective plasma
frequency of the beam. '

The experimental configuration and measure-
ment techniques are described elsewhere. ' The

plasma, produced by a dc discharge in He, with

trace Ar, is 85-cm long and 3 cm in diameter.
A longitudinal electron beam of 5-mm diam is
coaxial with the plasma; the axis of the system
is along the uniform magnetic field. The waves

propagate axially with a radius of 3 mm, which

is comparable to the beam radius. The numeri-
cal values of the experimental parameters are
given with the experimental results.

The two types of instability behave very differ-
ently. The convective wave has the well-known

properties; a small perturbation applied near
the gun is spatially amplified and saturates, the
amplitude pattern being steady in time. Linear
growth rates have Im(k. )/Re(k. ) ( O. l for beam
densities used. Spatial growth is found every-
where within the unstable region.

The absolute instability oscillates at essential-
ly a single frequency; it occurs spontaneously
and cannot be launched or synchronized by exter-
nal modulation. It does not have an exponential
growth in space; near the electron gun it rises
from zero to maximum amplitude very quickly

((2 wavelengths), then decays slowly in space.
The amplitude is usually not steady in time, but

switches off and on in time intervals of 0.1 to 10

p. sec. Off-to-on amplitude ratios as high as 50

dB have been observed.
We have measured the propagation constants in

the absolute and convective regimes, with the
results shown in Figs. 1 and 2. Experimental
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FIG. 1. Measured and calculated propagation con-
stants for absolute instability. Solid curves and squares,
theory; circles and cross, experiment; dashed lines,
typical trajectories in mapping. (a) Theory for real 4„
complex a. (b) & versus k~ after mapping. Circles
are for launched waves and the cross is for oscillations.
(c) Complex 4'~ plane after mapping. The theory gives
a saddle point beyond the graph indicated by the arrow.

data are plotted as open circles for launched
waves and a cross for the spontaneous oscilla-
tion. Also shown are the results of the calcula-
tion, given by the lines and squares. In Fig. 1
the system was adjusted so that the oscillation is
present. The experimental parameters are as
follows: co, =3.3 x10' sec.-', ~~=6.5x10' sec ',
~s=7.3x10" sec ', v, =6.6x10' cm/sec, and V
= 1.1 x10' cm/sec. To obtain the data in Fig. 2
the beam velocity is reduced to V= 9.3 x10' cm/

~IG. 2. Measured and calculated propagation con-
stants for convective instability. The plotting conven-
tions are those of Fig. 1. {a) Theory for real 4'», com-
plex ~; (b) ~ versus II, after the mapping; (c) &, plane
after mapping.

sec with all other parameters held constant.
This causes the oscillation to disappear and spa-
tial growth is observed throughout the band.

The curves in Figs. 1 and 2 were calculated
from (1) using the Bere-Briggs' mapping which
identifies the absolute instability and gives the
spatial solutions. The factors in (1) were evalu-
ated by directly substituting the experimental
constants given above, and only V is changed in
going from Fig. 1 to Fig. 2. In addition, the
fixed constants R =

4 and hi=10 cm ' were ob-
tained by fitting the experimental data in Fig. 2.
The values of R and k~ thus obtained are in ap-
proximate agreement with a calculation which
self-consistently includes radial boundary condi-
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tions. The results of the calculation will be pub-
lished elsewhere.

The calculation follows Briggs. ' In both cases
(1) is solved for real k„resulting in complex a
roots with Im(&u) &0 which implies that the mode
is unstable' [curves in Figs. 1(a) and 2(a)]. Then
Im(&u) is reduced to zero with Re(ur) fixed, Solu-
tions k = k(~) are traced out in the k. plane, and
typical trajectories of the roots are shown by
dashed lines. The results of the mapping are
given by the curves in Figs. 1(c) and 2(c). The
curves in Figs. 1(b) and 2(b) relate Re(&u) to
Re(k,) after the mapping; Fig. 1(b), 1(c), 2(b),
and 2(c) are thus for the spatial case correspond-
ing to the experiment. In Fig. 2 the mapping is
continuous, thus the instability is convective.
There is a branch point in the & plane, indicated
by the box in Fig. 1, and thus the continuous
curve in w is mapped into two branches in the k

plane. There is a saddle point in k off scale at
the arrow. According to the Bers-Briggs cri-
teria Fig. 1 shows absolute instability.

For the convective instability, Fig. 2, both the-
ory and experiment give spatially growing waves
throughout the unstable band, while for the ab-
solute instability, Fig. 1, both exhibit a gap in
the center of the band where spatially growing
waves do not exist. The oscillation which is
found in the experiment clearly corresponds to
the singularity of the calculations.

When V is increased beyond that of Fig. 1, the
stop band for amplified waves broadens until am-
plified waves are no longer observed. This ab-
sence of amplified waves could be used to define
"pure" absolute instability; however, we follow
the theoretical definition of Briggs, and define
absolute instability as the existence of the oscil-
lation.

In both cases the agreement between theory and
experiment is good. Therefore we consider that
(1) provides an adequate description of the ex-
periment, and the transverse geometry is well
approximated by fixed R and k~.

In the theory the linear properties of the ab-
solute instability are given by the cu and k, co-
ordinates of the branch point and saddle point.
The oscillation should thus have these values,
and the linear wave should be growing in time.
However, the experiment is steady state, which
implies that the observed oscillation is saturated.
We have made no systematic study of the tran-
sient behavior; however, an estimate of the tem-
poral growth rate of the oscillation was made us-
ing the pulsed behavior mentioned previously.
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FIG. 8, Threshold for absolute instability. Theoreti-
cal curves are calculated using the experimental values
~, =3&&10 sec ' for the solid curves and cu =4.8&&10

sec ' for the dashed curves. The absolute instability
exists above the threshold curve in each case.

This yields a value Im(ro)/Re(&u) = 0.01, which is
in order of magnitude agreement with the calcula-
tion.

The results in Figs. 1 and 2 show a transition
from absolute to convective instability as the
beam voltage is reduced. We have also studied
the dependence of the transition upon other pa-
rameters. We have observed the transition by
changing the plasma electron temperature,
through adjustment of the discharge conditions.
We have studied the dependence on &~ and cu„
with results shown in Fig. 3.

The solid and dashed curves are calculated, us-
ing the values of &u, given, by solving (1) with the
constraint that the branch point has Im(~) = 0.
The experimental points are obtained by increas-
ing the beam density from a low value, where
the oscillation is absent, to the point where the
oscillation appears. This is repeated for various
values of co~ and m„as shown. Beyond ~= 2.5',
the beam electron gun is heated by the plasma so
that threshold measurements could not be taken
above this point.

Our physical interpretation of these results is
that the transition depends upon the beam density
and the effective plasma temperature. From (1),
the plasma is effectively cold when k,v, /&u, «1
and (a& —n&u, )/k, v, = (1 —n&u, /~) V/v, » l. At fixed
temperature, the beam must exceed a critical
density in order to overcome the plasma loss and
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drive the oscillation, and this threshold density
increases with increasing temperature. At fixed
beam density the instability will become convec-
tive when the plasma is made effectively warmer,
since the given density will become smaller than
the threshold value. The experimental results
are thus due to the changes in threshold beam
density in response to changes in the thermal pa-
rameters. In Figs. 1 and 2 v, /V is changed, and
in Fig. 3 the threshold increases as h~v, /m, in-
creases and also as ~ approaches neo„where
v -neo, = 0.

In this experiment the plasma can be made ef-
fectively warm enough so that we have convective
instability at the maximum attainable beam den-
sity (&us'/&u„'= 10 '). In terms of thermal pa-
rameters this occurs when h v, /&u, &0.1 and p/
v, &10.

From this work we conclude that plasma ther-
mal effects must be considered in the analysis of
II-wave experiments, since either convective or
absolute instability may be present. We have
examined experiments on the H wave by other
workers, and conclude that the observed waves
were absolute instabilities"" except for the
work of Mizuno and Tanaka. ' There the cold-

plasma dispersion relation was erroneously used
to describe a convective instability.
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The growth of an. ion acoustic instability caused by a slow electron drift is studied ex-
perimentally. A small-amplitude test wave in this unstable system develops into a large-
amplitude steady state which is found to be a Bernstein-Greene-Kruskal-like ion mode
with trapped electrons.

We wish to report experimental observations
of the spatial growth of ion acoustic waves in
the presence of a slow electron drift. ' The final
state of the wave, which does not decay spatial-
ly, together with the measured distribution func-
tion, appear to be consistent with Bernstein-
Greene-Kruskal (BGK) modes' with trapped elec-
trons. Although theoretically predicted, ' such
modes have not been observed experimentally.
The temporal or spatial evolution of such BGK
modes have not been studied extensively either,
presumably because of a lack of experimental
evidence.

In our experiments we have chosen experimen-

tal parameters (density, temperature, and neu-
tral pressures) such that electrons can execute
many bounces in the ion acoustic wave potential
well within a collisional time. For either ions
trapped in ion waves' or electrons trapped in
electron waves, "the bounce time of the trapped
particles is usually slower than the wave per-
iod and it is difficult to observe experimentally
steady-state or quasi-steady-state behavior.
However, the large electron-to-ion temperature
ratio (T,/T; =15) and the high phase velocity of
the ion acoustic wave favor the trapping of elec-
trons rather than ions in our experiment. In
order to facilitate the identification of trapped
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