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We have made a systematic search for theories of interacting heavy vector mesons
which have unitarily bound trees. In simple cases (four vector mesons and one scalar
particle) the only unitarily bound models are spontaneously broken gauge theories. Evi-
dently, a unitarity bound, which controls high-energy behavior, imposes internal sym-

metry on heavy-vector-boson interactions.

Formal manipulation and detailed calculations
indicate that spontaneously broken gauge theories
(SBGT’s)! are renormalizable theories of heavy
vector mesons. In the unitary gauge,? character-
ized by the absence of nonphysical scalar excita-
tions in the Lagrangian, an essential aspect of
renormalizability is that tree graphs have a high-
energy behavior consistent with the unitary bound
on imaginary parts. Loosely speaking, the in-
variant amplitude T for the N-point tree graphs
should be of order E* ¥ or less when all scalar
invariants are large and proportional to a charac-
teristic squared energy (E?). In this way, the
imaginary part of one-loop N-point amplitudes,
when calculated from unitarity, will have the
same high-energy behavior (up to logarithms). A
large number of authors® have shown that SBGT’s
satisfy this high-energy condition, which we term
the tree-unitarity condition. The satisfaction of
the unitarity requirement is made possible by
coupling-constant and mass relations, which are
a remnant of the original gauge symmetry of the
SBGT.

In this paper, we investigate the inverse ques-
tion: Are all heavy-vector-meson theories which
satisfy the tree-unitarity condition of the SBGT
type? The interest in this question is threefold:
(1) At present, no known SBGT embraces all the
experimental weak-interaction phenomenology

in a clean-cut way; is there another class of re-
normalizable theories that does? (2) It is of
considerable phenomenological interest to study
possibly nonrenormalizable theories where it is
only known that the tree-unitarity condition is
satisfied for N-point trees with N < M, where

M is an interger like 4 or 5. In such cases, ef-
fects associated with GpA%2~1 (where A is a cut-
off and Gy is the Fermi coupling constant) occur
only in amplitudes of O(Gg®) or higher. (3) It is
remarkable to see the degree of internal sym-
metry which emerges simply by imposing unitar-
ity, with no a priori symmetry constraints.

We have derived the requisite relations be-
tween masses and coupling constants to satisfy
the tree-unitarity condition in two ways. The
first, reported here, is the brute-force tech-
nique of calculating the four- and five-point
trees explicitly. The second way is to exploit
the geometry induced on the internal (longitudi-
nal vector and scalar) degrees of freedom by the
structure of the Lagrangian, and to demand that
the curvature of this internal space be zero.*
Details of the second approach will be reported
in a lengthier publication.’

The most general interaction Lagrangian for
vector fields W,, (mass M,) and scalar fields
¢, (mass m,), which would be (naively) renor-
malizable if all the M, were zero (i.e., which
has dimension less than or equal to four), is®
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where all coefficients are real and 4, = -4, B, is totally antisymmetric, D ., =Dy.co =D 40,

F o, ®M=F,® g k=q k=g t* pkmigtotally symmetric, and R*™" is totally symmetric. Note the
CP-nonconserving terms involving 4 ,,. and B, ,. Fermions may be added without difficulty; for
brevity we omit them. They do not affect our conditions (2)-(9) below. Some of the vectors may be
massless, in which case they must couple to conserved currents in order to preserve Lorentz invar-
iance of the S matrix.

Consider the four-point amplitude for WW -WW. When all vectors are longitudinal, this amplitude is
of O(E®) at large energy, while tree unitarity requires it to be of O(E®). Straightforward calculation
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yields the following conditions for the tree unitarity of all WW — WW amplitudes:

A e =0, (2)
B gpea =0, (3)
C . 1s totally antisymmetric, (4)
Ca5eCote = CaceCvae = CateCcre=0, (5)
8D 4pea =C aceC vae +C aae € vee (6)
Yavea = Vacva s (N

where
Y abca = 4Fab(k)ch(k) +(C 15 C cae /MM - sz)(Mcz -Mp) +(M,? + M2+ M2+ My? = 3MP)C 10 C e

In the last relation those terms divided by a vector-meson mass are summed only over massive vec-
tor particles. Equations (4) and (5) mean that the C,,, are the structure constants of a Lie algebra.

Conditions (2)-(6) specify that the purely vector-meson Lagrangian (other than mass terms) is invar-
iant under the local gauge transformations of that Lie group, i.e., the pdrely vector-meson terms are
of the (possibly massive) Yang-Mills type, and no CP-nonconserving terms are allowed. On the other

hand, Eq. (7) shows that, if the vector-meson scattering amplitude obeys tree unitarity, then either
there must exist scalar particles appropriately coupled to the vectors or all vector particles are
massless. Next, the same procedure is applied to the scattering amplitude for W, W, - ¢, ¢,; the re-

sulting tree-unitarity conditions are as follows:

éakn ébnl - ébkn éanl +Cabn énkl :Mn-z(Fan(k) F‘nb(l) - Fan(l)Fnb(k))’
4Habkl = éakn ébnl + ébkn éanl - Mn-z(Fan(k)Fnb(l) +F¢m( I)Fnb(k)) - C abn C-nkl(Maz - sz)/Mn 2,

where
G*akz:%(cakz _ Galk), G—aklz_lz_(Gakl + Galk)-

Once again, terms with a vector-meson mass in
the denominator are summed only over massive
vector particles. Notice that, #f the right-hand
side of Eq. (8) were zero (e.g., if all vectors
were massless), then the matrices G, would rep-
resent the Lie algebra specified by C,,.. Equa-
tion (9) determines the vector-scalar “seagull”

in terms of other coupling constants. Needless

to say, conditions (2)-(9) are satisfied by SBGT
theories, as one may show by direct calculation.
Other conditions emerge from the process WW

- W¢ and from the five-point trees, which unique-
ly determine the ¢® and ¢* interactions. Rather
than write these out in full generality, we deal
with specific examples next.

We do not yet know how to solve these nonlinear
equations in general. Therefore, let us consider
a special particle spectrum, which includes most
of the popular models in which the group struc-
ture is based on SU(2), U(1), or their direct pro-
duct.

Assume that there are three massive vectors,
one massless vector, and one scalar. The mass-
less vector (W,) must couple to a conserved cur-
rent. The other fields (2°V2W,; ,,, w,, ¢) have the

(8)
(9)

I conserved charge assignments +1,0,0. Charge
conservation imposes conditions on the Lagrang-
ian such as (suppressing scalar indices)

C134=0, C,y3,=0, F=Fy, F,=0,

F_,=0, if a+b;
(10)
G,=G,=G,=0, H, =H,, H,=0,

H,=0, if azb.

The net effect of these restrictions is to reduce
the Lagrangian (1) to a form with 26 independent
coupling constants. Now we can demonstrate our
main result: Tree unitarity is satisfied if and
only if these 26 coupling constants can be de-
scribed by a few independent parameters, exactly

in accordance with the SBGT prescription. First
notice that Eq. (7) implies

4F | *=(4M* = 3MP)C 1,4 +4M,%C 1,2,

4M PF | F 35 = M 'C 1,52, (11)
and that Eq. (9) can be written as

F,2+2MH,,=0, F,*+2MH,, =0, (12)

Next, the tree-unitarity condition is imposed on
the scattering amplitudes for W, W, - ¢¢¢ and
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W,W, -~ ¢@q¢ with the result
FuG:s2 =0,

F,,(4M,*R - 2m®H ,, +3PF,,) =0,
F33632 - 0’ (13)
F5(4M,°R — 2m®H 4, + 3PF ;) = 0.

Similarly, the tree-unitarity behavior of W,W,
-W,W,¢ and W,W, - W,W,¢ is guaranteed if

F,2(2M 2P +m?F,)) =0,

F 2(2M,2P +m®F,,) = 0. (14)
A set of coupling constants and masses, which
satisfies all of the above equations, must fall in-
to one of five categories:

(a) G,=F,,=F, =0, It follows that all vector
particles are free and that the scalar has ¢® and
¢* interactions only.

(b) G,=F,,=0; Fo;#0. Now W,, W,, and W, are
free; the W,-¢ system is identical to the origi-
nal Higgs? [U(1)] SBGT.

(¢) Gy=F,3=0; F,,#0. In this case W, is free
while the (W,, W,, W,, ¢) interaction is identical
to the Georgi-Glashow® [SU(2)] SBGT.

(@) G,=0; F,;#0; F,;#0. All five fields inter-
act exactly as in Weinberg’s® [SU(2) ® U(1)] SBGT.
(e) G;#0. Here again all vector particles are

decoupled, and the scalar is self-interacting.
Thus for the above-mentioned particle spectrum,
all tree-unitary theories are of SBGT type, a
feature which we conjecture is true in general.

As another example, consider the most general
theory of one scalar and three vectors with any
masses a priovi. In this case unitarity requires
that the model be either (1) the Georgi-Glashow
model® (one massless vector, two degenerate
massive vectors, one scalar) or (2) the Weinberg
model with no coupling to “hypercharge”’® (three
degenerate massive vectors, one scalar)., No-
tice that the unitarity condition is compatible
with only two vector mass spectra in models of
this sort.

Of course, imposing the tree-unitarity condi-
tion is not sufficient to guarantee renormaliza-
bility. There is the problem of triangle-loop
anomalies, which would violate unitarity in the
real part of scattering amplitudes. We shall
discuss this problem in our lengthier work.®

We close with two questions. (1) Is it possible
to construct a Veneziano-like model with a sen-
sible mass spectrum by imposing the tree-uni-
tarity condition? Note the similarity of the
ghost-free Veneziano model mass spectrum to
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that which would be naively inferred from Higgs
models if their spontaneously broken character
were not recognized, namely, scalar tachyons
and zero-mass vectors. (2) General relativity
is not the massless limit of a pure tensor the-
ory'; the correct limit is only achieved when
scalar excitations are included. Is the correct
mixture of scalar and tensor fields determined
by a boundedness condition at high energy ?
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